
OneStep ChargeSM User's Guide
& API Specification

Version 2.2c
Updated July 7, 2014

Table of Contents
1.0 Conventions...1
2.0 Introduction..1
3.0 Installation...3

3.1 Installing, Running and Stopping the OneStep Charge Broker (OSCBroker)
...3

3.1.1 OSCBroker Command-Line Parameters...5
3.2 Installing the OneStep Charge Progress Code..6

4.0 Configuration...6
4.1 OSCConfig Temp-Table..6
4.2 Configuration File...9

5.0 OneStep Charge API Specification...9
5.1 trExec Temp-Table..9
5.2 Credit Card Action (CCA) Values...17
5.3 ACH Action (ACHA) Values...25
5.4 OSC Administrative Action (OSCA) Values...27
5.5 Credit Card Status (CCS) Values..28
5.6 ACH Status (ACHS) Values...29
5.7 Currency Code (OSC_CURR) Values...30
5.8 AVS Result (AVS) Values..31
5.9 API Functions...32
5.10 Multi-Merchant Support..33
5.11 Purchase Card Level II (PC II) Support...33
5.12 Purchase Card Level III (PC III) Support...34
5.13 OneStep Charge Vault...34
5.14 Transaction Settlement..37
5.15 Data Availability Delay...38

6.0 Examples...39
6.1 CCA_AUTHONLY Example...39
6.2 CCA_PURCHASE Example...40
6.2.1 CCA_PURCHASE Example - Purchase Card Level II (PC II)................41
6.2.2 CCA_PURCHASE Example - PC Level III (PC III), No Lines.................42

6.2.3 CCA_PURCHASE Example - PC Level III (PC III), Lines.....................44
6.3 CCA_STATUS Example...45
6.4 CCA_CAPTURE Example..46
6.5 CCA_QTRANS Example..46
6.6 OneStep Charge Vault Examples...47
6.6.1 Vault Example: CCA_STORE..47
6.6.2 Vault Example: CCA_STORE (update existing record).........................48
6.6.3 Vault Example: CCA_AUTHONLY (no overridden fields)......................49
6.6.4 Vault Example: CCA_AUTHONLY (overridden fields)...........................50
6.6.5 Vault Example: CCA_QVAULT..51
6.6.6 Vault Example: CCA_UNSTORE..51
6.7 ACHA_PURCHASE Example...52
6.8 Test Credit Card Numbers and ACH Accounts..53

7.0 Diagnostics...54
8.0 Getting Help...54

Copyright © 2003-2014 Tri-8, Incorporated. ALL RIGHTS RESERVED. Unauthorized
modification with or without redistribution is strictly prohibited.

Thank you for your interest in OneStep ChargeSM, the premier electronic payment processing
solution for use within the Progress 4GL. This User's Guide is intended to help you familiarize
yourself with OneStep ChargeSM and its operation, and to help you minimize the time
necessary to implement OSC at your site and/or with your application.

1.0 Conventions

Throughout the OneStep ChargeSM documentation set you will find the "$OSC" convention
used to refer to the installation directory for OneStep ChargeSM. This corresponds to the
directory into which you have extracted/untarred the OSC (OneStep ChargeSM) distribution.
For example, if you have untarred your OneStep ChargeSM distribution into /opt on a UNIX
machine, $OSC will refer to "/opt/OneStepCharge" for your installation.

When a code snippet or command line is used for illustration or to provide an example, the
code or command itself will appear in this fixed-width font. For UNIX/DOS command
prompts, the prompt itself (configurable on each system, of course) will be represented by
“prompt>” in this guide.

2.0 Introduction

OneStep ChargeSM is a payment processing engine for the Progress 4GL. Its goal is to enable
you to integrate lowest-cost realtime electronic payments into your Progress application with
minimal effort and time requirements. The OneStep ChargeSM Applications Programming
Interface (API) exists as a defined mechanism whereby you may communicate back and forth
with OneStep ChargeSM, using OSC as your payment processing backend. Communication
with OSC takes place via a standard temp-table named trExec, which is defined in the API
include file (tri8osc/oscapi). In general, this communication is as simple as creating one or
more trExec records and passing them to the OSC Engine (tri8osc/oscengin.p), then reading
those records to determine the results.

OneStep ChargeSM provides the full, robust framework and API for your application in the
Progress 4GL, as well as a TCP/IP-based processing node infrastructure whereby
transactions are sent to the appropriate processing network, such as Vital, Paymentech, Nova,
etc. OSC utilizes a 4GL codebase that imposes a very small footprint in your own application
codebase, and the API is written with complete application independence in mind. Therefore,
developers can incorporate OneStep ChargeSM functionality into any Progress 4GL Version 9
(or later) program regardless of the user interface (or lack thereof) chosen for the host
application.

When OneStep ChargeSM processes a transaction, the transaction data are sent through a
triple-redundant, high-performance, encrypted system of processing nodes referred to as the
OneStep ChargeSM Engine. The Engine handles high-speed communications with the
appropriate processing network (such as Vital) and encrypted storage of essential transaction
data elements. A querying infrastructure is placed within the Engine as well, which utilizes a

Pure Progress Payment Processing 1 What Will Pure Progress Mean For You?SM

double-failover (currently) setup. The transaction-processing side of the OSC Engine,
complete with triple-failover (currently N=3), is built for 100% uptime, while the querying side
(currently double-failover), for CCA/ACHA_STATUS and CCA/ACHA_QTRANS, is only slightly
less redundant. Please also refer to the “Data Availability Delay” section in this guide.

The basic architecture and process flow of OneStep ChargeSM is shown in the Figure 1.

IMPORTANT NOTE: OneStep ChargeSM provides the tools you need for complete electronic
payment processing operations within the Progress environment. No database is required
and OSC does not store your transactions for you locally. It is always assumed that you will

Pure Progress Payment Processing 2 What Will Pure Progress Mean For You?SM

Figure 1: OneStep Charge Architecture

store the portions of information about transactions that you see fit into your Progress
database, in a table of your choice and construction. Once a transaction has either been
declined (CCS_DECL, CCS_CALL) or subject to a non-system error (CCS_ERR), or has
settled (CCS_CLOSED), the transaction is NOT GUARANTEED to be available for further
querying via the OneStep ChargeSM Engine. These “historical” transactions, as opposed to
live batches and pre-authorized (CCS_AUTHONLY) transactions, are not kept indefinitely by
the payment processing networks nor the OneStep ChargeSM Engine. Transactions are not
guaranteed to be available after a period of 120 days from the settlement of the transaction
(CCS_CLOSED) or its declination (CCS_DECL). As you will see below, the CCA_QTRANS
command is available for reporting/query operations, but this is not intended to provide long-
term historical data access.

3.0 Installation

Two main steps make up the installation of OneStep ChargeSM:

1. Install and run the OSCBrokerSM (see notes below to skip this step for demo).
2. Unpack and copy the OSC source code into your PROPATH.

3.1 Installing, Running and Stopping the OneStep ChargeSM Broker
(OSCBrokerSM)

The OSCBrokerSM must be running at all times in order for OneStep ChargeSM to operate. The
OSCBrokerSM facilitates connections among the OneStep ChargeSM Engine processing nodes,
providing triple redundancy and 2048-bit RSA encryption for every transaction. It is a Java-
based utility and requires the Java Runtime Environment (JRE or JDK/SDK) version 1.6.0 or
later.

It is recommended that you simply run the OSCBrokerSM JAR file from its default
location($OSC/broker/OSCBroker.jar). However, you may certainly copy OSCBroker.jar to
another location if you need to. If the operating system of the machine(s) upon which you are

Pure Progress Payment Processing 3 What Will Pure Progress Mean For You?SM

PLEASE NOTE
You may skip the OSCBrokerSM Java requirements, installation and execution
when you first evaluate and test OneStep ChargeSM. The default OneStep
ChargeSM configuration (in $OSC/tri8osc/oscapi) directs OneStep ChargeSM to
connect to the publicly-available DEMO OSCBrokerSM at
OSCBrokerDemo.OneStepCharge.com. THIS IS FOR DEMONSTRATION
AND TESTING PURPOSES ONLY AND SHOULD NEVER BE DONE IN A
LIVE SCENARIO. You must always deploy a local OSCBrokerSM before
running live transactions or sending ANY live credit card numbers. To try
things out without firing up the OSCBrokerSM, skip to step 2 (section 3.2)
below and install the OneStep ChargeSM source code.

running OneStep ChargeSM does not provide a sufficiently modern Java release (1.6.0 or
greater), you may copy the OSCBroker.jar file to a host on your local network that does
support a modern Java version. OneStep ChargeSM can easily be pointed toward a separate
host via the OSCConfig.brokerHost parameter in $OSC/tri8osc/oscapi . By default, the live
configuration is recommended to connect to the OSCBrokerSM on "localhost," but you can
change this to be
any hostname or IP address (hostname is highly recommended) corresponding to the host
upon which you have chosen to run the OSCBrokerSM.

Run the broker by typing the following at a command prompt (DOS or Unix/Linux command
prompt):

prompt> java -jar OSCBroker.jar &

Use the "&" (on Linux, for example) to send the OSCBrokerSM to the background and run it
independently from the shell in which you executed the command. You may need to fully-
qualify the "java" command or the location of the JAR file, depending upon your PATH
environment variable.

For example:

prompt> /path/to/your/jre/bin/java -jar /path/to/OSCBroker.jar &

Also, please note that, depending on how you're logged in and what operating system you're
running, exiting your shell might kill the Java process you just started. Be sure to check that.
If it's a problem, you may want to use the “nohup” command (on most Unix/Linux OSes), for
example, to prevent your telnet or SSH session from hanging up your Java process when you
exit (if you're starting the broker while logged in via telnet or SSH, as opposed to a local
console).

For example:

prompt> nohup java -jar OSCBroker.jar &

Set the host upon which you run OSCBrokerSM to run the OSCBrokerSM JAR file upon

Pure Progress Payment Processing 4 What Will Pure Progress Mean For You?SM

IMPORTANT
PLEASE BE ADVISED THAT THE TCP/IP COMMUNICATIONS
BETWEEN ONESTEP CHARGESM ITSELF AND THE OSCBROKERSM
ARE NOT ENCRYPTED. Therefore, if you choose to run the OSCBrokerSM
on a different host than the OneStep ChargeSM Progress code, such that
OSCConfig.brokerHost is not "localhost" but is some other address, you
MUST be certain that the network between OSC and the OSCBrokerSM is
trusted, private, and free from eavesdropping/network sniffing or other
attacks.

system startup. This can be done with the command line placed in standard startup scripts
specific to your Unix/Linux system, such as /etc/rc.local or in an init script of its own. On
Windows, you may create a .bat file that runs the Java command (java -jar OSCBroker.jar), or
use other such methods.

In all cases, make sure that your startup mechanism has appropriate PATH settings (or fully-
qualify the "java" command) and access (permissions, etc.) to the OSCBrokerSM JAR file and
the "java" command.

Please note that the OSCBrokerSM will, by default, output its standard log to OSCBroker.log in
the current working directory in which you issue the "java" command. Be sure that proper
permissions exist to write the log file. You may change the log file destination by using the “-l”
command-line parameter.

To stop the broker, use the -stop command-line parameter (see below for more information on
command-line parameters).

For example:

prompt> java -jar OSCBroker.jar -stop

It is very important to stop the OSCBrokerSM gracefully (using the -stop command instead of
merely killing the Java process(es)), as doing so will allow the broker to finish all active
transactions before shutting down.

The OSCBrokerSM will listen on TCP port 4888 by default (this can be changed with the -p
command line parameter, see below). Be certain to allow this port, inbound, for any firewalls
protecting the machine on which the OSCBrokerSM is running—allow inbound TCP port 4888
(or whatever port you choose to use instead via the -p command line parameter).

Please see the section in this guide concerning OSC Administrative Action Values for
information about OSCBrokerSM diagnostics.

3.1.1 OSCBrokerSM Command-Line Parameters

The OSCBrokerSM supports some command-line parameters to aid in its execution on your
host. General OSCBrokerSM usage is:

java -jar OSCBroker.jar [-l logFileName] [-p portNumber] [-v] [-stop]

Options:
• [-l logFileName]: If this parameter is specified, the OSCBrokerSM will write its log to the

destination specified by logFileName instead of to the default “./OSCBroker.log”.

• [-p portNumber]: This parameter directs the OSCBrokerSM to attach to the port number

Pure Progress Payment Processing 5 What Will Pure Progress Mean For You?SM

specified, instead of to the default (4888).

• [-v]: The OSCBrokerSM will simply display its version on standard output, then exit.

• [-stop]: The OSCBrokerSM will shut down. Please note that if you specified a different port
number via the -p parameter when you initially started the broker, you must specify the port
number again, via the -p parameter, when you issue the stop command. Example:
prompt> java -jar OSCBroker.jar -p 12345 -stop

3.2 Installing the OneStep ChargeSM Progress Code

The OneStep ChargeSM Progress software is located in the "tri8osc" directory. In order to use
OSC you will need to place the tri8osc directory somewhere in your PROPATH. This can be
done by modifying your PROPATH to include your $OSC/tri8osc directory, or you may
copy/move the tri8osc directory into a location already included by your existing
PROPATH. This latter method eliminates the need to make changes in startup scenarios and
parameters and is generally the easiest approach.

In addition, be sure to consult section in this guide concerning the OSC runtime configuration
file. This file allows you to compile your default OSC configuration settings into your Progress
R-Code executables but override some (or virtually all) settings at runtime on an as-needed
basis, without the need for recompiling, such as when extra debug/diagnostic information is
desired immediately.

If you can run only R-Code, even while testing OneStep ChargeSM, and cannot also run
compile-on-the-fly source code, then compile the OneStep ChargeSM core run program
($OSC/tri8osc/oscengin.p). This is the only file you need to compile. For live runtime
environments, which are assumed to be R-Code only, be sure to compile
$OSC/tri8osc/oscengin.p and make the resulting oscengin.r file available to your application.

COMPILING $OSC/tri8osc/oscengin.p into .r code, rather than letting Progress compile
it for you on-the-fly each time you run it (during your evaluation of OSC) should cause
OSC to run significantly faster.

4.0 Configuration

OneStep ChargeSM is configured via the OSCConfig table. The values contained in the
OSCConfig temp-table are established in two basic ways: the values specified for OSCConfig
in $OSC/tri8osc/oscapi, and the runtime overrides found in the configuration file.

4.1 OSCConfig Temp-Table

Pure Progress Payment Processing 6 What Will Pure Progress Mean For You?SM

First, you may (and should) edit the assignments to the OSCConfig table in
$OSC/tri8osc/oscapi and use values that suit your needs. These values will then be available
in the OSCConfig table anywhere in a program after you include the API file (tri8osc/oscapi) in
your code.

1. OSCConfig.confFile : Your configuration file location. Be sure that this file is readable (e.g.
correct permissions) for any user or process which needs to use OneStep ChargeSM. If the
file is not readable, your runtime configuration overrides will not function properly nor
reliably.

2. OSCConfig.serialNo and OSCConfig.licenseKey: OneStep ChargeSM serial number and
license key.

3. OSCConfig.brokerHost and OSCConfig.brokerPort: Your OSC broker (OSCBrokerSM)
connection parameters. It is highly recommended that you use a host name (with
accompanying DNS or hosts file) for your OSCConfig.brokerHost instead of an IP address.

4. OSCConfig.username and OSCConfig.password: Your OneStep ChargeSM username and
password for running transactions. These values are assigned to you by Tri-8 when you
license OneStep ChargeSM for live use. It is highly recommended that you do not specify
your username and password in either your tri8osc/oscapi file nor your (perhaps world-
readable) configuration file. Ideally, storing this data in your own database table and then
assigning it to the OSCConfig table within tri8osc/oscapi is the best and most secure way
to protect this sensitive information.

Those fields are the minimum fields required to get OSC running. Following are descriptions
of the other fields which may be configured (see the file tri8osc/oscapi itself for inline
comments).

5. OSCConfig.panicDir : Directory into which to place panic (save) files. This directory must
be readable and writeable by any user who uses OneStep ChargeSM if you wish to use the
panic infrastructure. See the panicSave() function in the API Functions section for more
information.

6. OSCConfig.defaultTimeout : This is the default timeout for basically all operations utilizing
the OSC Engine. Please note that this is an approximation, in seconds, of the total
execution, but actual run time can vary a bit. When creating a standard trExec record, you
may specify the timeout for the respective operation by assigning trExec.timeout. This
field of the OSCConfig table gives you an easy way to set defaults in your application
programs—you can always just assign OSCConfig.defaultTimeout into your trExec.timeout
field, if you want. Note that it is the trExec record which contains the effective timeout—
the OSCConfig.defaultTimeout field merely gives you a place to save a default value which
must still be assigned to individual trExec records. If you do not specify a value for the
trExec.timeout field for any individual trExec record, OSCConfig.defaultTimeout will be
used automatically for that record by OSC.

7. OSCConfig.yearOffset : This is used to offset years for two-digit-year expiration dates, and

Pure Progress Payment Processing 7 What Will Pure Progress Mean For You?SM

will likely never be changed.

8. OSCConfig.debug : This flag sets the logging verbosity of the OSC Engine. If set to true,
OneStep ChargeSM will be much more verbose in the information it logs and provides
during program execution. It can be quite handy to toggle this flag in your config file to
immediately activate debug verbosity on-demand without recompiling any programs, in
order to solve a problem.

9. OSCConfig.vDebug : Reserved for use by Tri-8, Inc.

10. OSCConfig.devMode : The devMode field allows you to redirect OSC operations at
runtime based upon an environment variable. If your Progress session has the
environment variable “DEVMODE” set to “yes” then OSC will operate in development
mode. The only difference is that OSC will read the devConfFile (see next item) instead of
your standard config file, and it will use OSCConfig.devLogSpec and
OSCConfig.devLogMethod for logging instead of OSCConfig.logSpec and
OSCConfig.logMethod. Therefore, you can set a completely different
brokerHost/brokerPort/username/password for development transactions via a separate
config file, and merely have your startup environment set a variable in order to redirect
transactions to a test merchant account. You can then easily test your application code
without worrying about charging a live credit card.

11. OSCConfig.devConfFile : Exactly like OSCConfig.confFile, except that the file specified will
be read instead of the one specified in OSCConfig.confFile if OSCConfig.devMode is
toggled to true.

12. OSCConfig.logMethod : The logMethod field specifies the mechanism whereby OneStep
ChargeSM will deliver its log entries. The value for this field must be either “to” or “thru”. If
it is “to” then OSC will simply open the file specified in the logSpec field and deliver log
lines to that file, corresponding basically to a standard Progress “output to” statement. If
the value is “thru” then OSC will use the logSpec field to specify a command through which
to deliver log lines, just like a standard Progress “output through” statement.

13. OSCConfig.logSpec : This field corresponds with the logMethod field (see description
above). If logMethod is “to” then this field specifies the file to use for a log. For a “thru”
logMethod this field specifies a program name/command. For example, with “to” as the
logMethod this field might have a value of “/var/log/cc.log”. For a logMethod of “thru” the
logSpec might be “/usr/bin/logger -p local3.info” in order to use the UNIX Syslog daemon
for logging OSC log lines via the local3.info facility.

14. OSCConfig.devLogMethod : This field is just like logMethod, except that it applies when
OSCConfig.devMode is set to true. This allows you to use a separate logfile or logging
facility when in development mode.

15. OSCConfig.devLogSpec : This field corresponds to devLogMethod in the same manner
that logSpec corresponds to logMethod. Used only when OSCConfig.devMode is true.

Pure Progress Payment Processing 8 What Will Pure Progress Mean For You?SM

4.2 Configuration File

Second, and in addition to the compiled-in defaults that you may specify in tri8osc/oscapi, you
may edit the configuration file (the location of which is specified in OSCConfig.confFile). This
file is read at runtime, so that values read therein override the compiled-in defaults that you
specified in tri8osc/oscapi. A sample configuration file is provided in $OSC/conf/osc.conf.
You may use this file as a guide for configuring runtime configuration overrides. The file
includes inline comments for your assistance, but the basic format is var=value pairs, one pair
per line, where “var” is the name of an OSCConfig field. For example, “debug=yes” would set
the OSCConfig.debug field to true at runtime.

5.0 OneStep ChargeSM API Specification

The OneStep ChargeSM API is the interface through which you can harness the power of
OneStep ChargeSM and deliver it seamlessly to your application. The API itself requires very
little effort to use with any Progress program. By including the standard API include file
($OSC/tri8osc/oscapi) in your program, you have all the infrastructure you need to use
OneStep ChargeSM.

5.1 trExec Temp-Table

The OneStep ChargeSM API is built around the trExec temp-table. This table is
the transport mechanism whereby you can pass information to the OSC Engine and
receive results back. The trExec table contains the following fields (data types in parentheses,
maximum data length/value, where applicable, in brackets):

 username (char)
 password (char)
 transNo (int)
 enteredBy (char) [maximum length: 20]
 trackData (char)
 cardNo (char) [maximum length: 16]
 expDate (char) [maximum length: 4]
 amount (dec) [maximum value: 999999.99]
 currencyCode (int)
 CHName (char) [maximum length: 60]
 CHAddress (char) [maximum length: 80]
 CHAddress2 (char) [maximum length: 80]
 CHCity (char) [maximum length: 40]
 CHState (char) [maximum length: 20]
 CHZip (char) [maximum length: 20]
 CHPhone (char) [maximum length: 30]
 CHEmail (char) [maximum length: 50]

Pure Progress Payment Processing 9 What Will Pure Progress Mean For You?SM

 AVSResult (int)
 CVV2 (char) [maximum length: 4]
 PONo (char) [maximum length: 17]
 tax (dec) [maximum value: 999999.99]
 shipToZip (char) [maximum length: 10]
 vatNo (char) [maximum length: 14]
 commodityCode (int) [maximum value: 9999]
 discount (dec) [maximum value: 9999999999.99]
 shipHandling (dec) [maximum value: 9999999999.99]
 duty (dec) [maximum value: 9999999999.99]
 numLines (dec) [maximum value: 99]
 productCode (char) [maximum length: 20] {EXTENT 99}
 price (dec) [maximum value: 99999999.99] {EXTENT 99}
 lineDiscount (dec) [maximum value: 9999999999.99] {EXTENT 99}
 quantity (int) [maximum value: 999] {EXTENT 99}
 description (char) [maximum length: 47] {EXTENT 99}
 uom (char) [maximum length: 12] {EXTENT 99}
 routingNo (char) [maximum length: 9]
 accountNo (char) [maximum length: 17]
 OSCID (char)
 batchNo (int)
 authStatus (int)
 authDetails (char)
 apprCode (char)
 authDate (date)
 authTime (int)
 settleDate (date)
 settleTime (int)
 comment (char) [maximum length: 60]
 source (char) [maximum length: 40]
 action (int)
 timeout (int)
 qFromDate (date)
 qFromTime (int)
 qToDate (date)
 qToTime (int)
 vaultID (char)
 stored (log)
 storageDate (date)
 storageTime (int)
 unStorageDate (date)
 unStorageTime (int)
 lastUpdateDate (date)
 lastUpdateTime (int)
 lastTransDate (date)
 lasttransTime (int)

Pure Progress Payment Processing 10 What Will Pure Progress Mean For You?SM

 transCount (int)

Following are the descriptions of these fields.

1. trExec.username : Use the username field to specify a username specific to the individual
trExec record, rather than accepting the username configured in OSCConfig.username.
This is useful for running in multi-merchant environments. You do not need to specify
the trExec.username field in general—use it only if you choose or if you are performing
multi-merchant functions.

2. trExec.password : Like username, except that this specifies the password to use for this
individual trExec record. Used for multi-merchant functionality.

3. trExec.transNo : The transNo field represents the primary tracking mechanism for payment
transactions. It is user-assigned (programmer-assigned) and should always be a unique
value within a single batch of transactions (trExec records) and, ideally, always unique
within your entire system. It is used to retrieve status values and perform further
processing, and therefore should never be duplicated.

4. trExec.enteredBy : This field allows you to track the author of a transaction through OSC.
You may wish to assign this field the userid of the user who executed the original
transaction, or something similar. This is useful for tracking later, especially if any
problems arise which must be tracked to a specific user, and for audit purposes.

5. trExec.trackData; Full, unaltered track data (from a card swipe). If this field is not
populated for new (CCA_AUTHONLY, CCA_PURCHASE, etc.) transactions then
trExec.cardNo and trExec.expDate must be populated instead. This field is only used in
card-present environments where a card swipe is done. OneStep ChargeSM will also parse
and use individual tracks (1 and 2), so if you supply only track 1 or only track 2 data in the
trExec.trackData field then the data will be sent appropriately.

6. trExec.cardNo : This is the credit/debit/private/etc. card account number to charge/credit.
No dashes nor spaces allowed.

7. trExec.expDate : This is the expiration date of the credit card, in a “MMYY” format.

8. trExec.amount : The amount should be in dollars and cents (for US Dollar transactions) or
in corresponding denominations for other currencies. An amount of “2” will be billed as
“2.00” and is acceptable. Amounts “1.5” and “1.50” will both be processed as “1.50” .

9. trExec.currencyCode : The currency code for the transaction, which will interpret the
amount value used. See the section in this guide concerning currency codes for values
defined.

10. trExec.CHName : The CHName field specifies the cardholder name. If this field is non-

Pure Progress Payment Processing 11 What Will Pure Progress Mean For You?SM

blank, it will be transmitted as part of AVS (Address Verification Service) operations, which
may yield better credit card processing fee rates, depending upon your merchant account
setup.

11. trExec.CHAddress : This is the cardholder address. Like the CHName field, if this field is
non-blank it will be transmitted as part of AVS operations.

12. trExec.CHAddress2 : This is the cardholder address line 2. Like the CHAddress field, if
this field is non-blank it will be transmitted as part of AVS operations.

13. trExec.CHCity : This is the cardholder city, (optionally) used for extra tracking/storage.
Please note that this field does not affect AVS.

14. trExec.CHState : This is the cardholder state, (optionally) used for extra tracking/storage.
Please note that this field does not affect AVS.

15. trExec.CHZip : This is the cardholder zip code, which functions like CHName and
CHAddress, and does affect AVS. It will be transmitted for AVS if a value is supplied.

16. trExec.CHPhone : This is the cardholder phone number, (optionally) used for extra
tracking/storage. Please note that this field does not affect AVS.

17. trExec.CHEmail : This is the cardholder email address, (optionally) used for extra
tracking/storage. Please note that this field does not affect AVS.

18. trExec.AVSResult : The AVSResult field returns the specific level of address match
achieved by the AVS attempt (if applicable). See the section in this guide concerning AVS
result codes for values defined.

19. trExec.CVV2 : The CV/CVV2 value is a special (usually three- or four-digit) value assigned
to a credit card account to help counter fraud. It often appears on the back of the actual
credit card (front for American Express cards). If this field is non-blank, it will be
transmitted as part of the transaction (if applicable). The benefit to the merchant varies
depending upon merchant account setup.

20. trExec.PONo : This field is used only when Purchase Card Level II (PC II) or Level III (PC
III) support is desired. This field contains the purchase order number for the transaction,
as you wish for it to appear. NOTE that only the first 17 alphanumeric characters are
accepted by the processing networks, so if you supply more than 17 characters the value
will be truncated. PC II and PC III transactions only.

21. trExec.tax : This field works like the trExec.amount field. The amount of sales tax for the
transaction should be supplied via this field. If no tax is applicable, supply 0 (even on a PC
II or PC III transaction). PC II and PC III transactions only.

22. trExec.shipToZip: The ZIP code to which the goods will be shipped, if any shipping is to
occur. PC II and PC III transactions only.

Pure Progress Payment Processing 12 What Will Pure Progress Mean For You?SM

23. trExec.vatNo: The VAT Registration number associated with the customer, if applicable.
PC III transactions only.

24. trExec.commodityCode: The four-digit commodity code for the order, if any. PC III
transactions only.

25. trExec.discount: The overall discount applicable to the order (the whole order), if any. PC
III transactions only.

26. trExec.shipHandling: The shipping and handling total amount for the order, if any. PC III
transactions only.

27. trExec.duty: The duty amount applicable to the order, if any. PC III transactions only.

28. trExec.numLines: The number of lines of order information that will be supplied on this
Purchase Card Level III (PC III) transaction. Set this value to exactly the number of order
lines for which you will supply PC III information. Note that if the number of order lines for
which data is submitted exceeds the value of trExec.numLines, the extra lines will be
ignored. PC III transactions only.

29. trExec.productCode[]: The item number (product code, SKU, etc.) of the particular order
line. This field is an array (extent 99). Array element 1 represents the product code of the
first order line (for this transaction). Array element 2 represents the product code for the
second order line (for this transaction), and so on, up to a maximum of 99 order lines. If
any line data is supplied, productCode is a required field. That is, you cannot supply order
line data and omit the productCode—either it must be supplied for the line or no line data
must be supplied. PC III transactions only.

30. trExec.price[]: The price charged for this particular order line. Like trExec.productCode,
this field is an array (extent 99) allowing the specification of up to 99 order lines. Array
element N contains the price for order line N. If any line data is supplied, price is a
required field. That is, you cannot supply order line data and omit the price—either it must
be supplied for the line or no line data must be supplied. PC III transactions only.

31. trExec.lineDiscount[]: The discount amount applied for this particular order line. Like
trExec.productCode, this field is an array (extent 99) allowing the specification of up to 99
order lines. Array element N contains the discount for order line N. PC III transactions
only.

32. trExec.quantity[]: The quantity of goods for this particular order line. Like
trExec.productCode, this field is an array (extent 99) allowing the specification of up to 99
order lines. If any line data is supplied, quantity is a required field. That is, you cannot
supply order line data and omit the quantity—either it must be supplied for the line or no
line data must be supplied. Array element N contains the quantity for order line N. PC III
transactions only.

Pure Progress Payment Processing 13 What Will Pure Progress Mean For You?SM

33. trExec.description[]: The line description for this particular order line. Like
trExec.productCode, this field is an array (extent 99) allowing the specification of up to 99
order lines. Array element N contains the order line description for order line N. PC III
transactions only.

34. trExec.uom[]: The unit of measure for this particular order line. Like trExec.productCode,
this field is an array (extent 99) allowing the specification of up to 99 order lines. Array
element N contains the unit of measure for order line N, such as “EACH” or “LBS” or
“FEET.” PC III transactions only.

35. trExec.routingNo : The routingNo field is used for ACH (e-check) transactions only. Supply
the bank routing number here.

36. trExec.accountNo : The accountNo field is used for ACH (e-check) transactions only.
Supply the bank account number here.

37. trExec.OSCID : This is the OneStep ChargeSM ID. It is a OneStep ChargeSM-assigned
value that uniquely identifies the transaction within OneStep ChargeSM. Whereas the
trExec.transNo field is user-assigned, the OSCID will be assigned by OSC and can be
used for extended tracking or auditing. Please note that this field is quite important and
should always be tracked (as should trExec.transNo, to be safe). The trExec.OSCID field
is required to properly issue CCA_CAPTURE commands, as well.

38. trExec.batchNo : The trExec.batchNo contains settlement batch number. When a
transaction has settled, CCA_STATUS requests on the transaction will populate the
trExec.batchNo field in their results, indicating the settlement batch of which the
transaction was a part.

39. trExec.authStatus : The authStatus represents the current authorization status of the
transaction. Authorization status values must be one of the pre-defined Credit Card Status
values (beginning CCS_) or ACH Status values (beginning ACHS_), such as CCS_RTS for
“Ready To Settle” or CCS_AUTHONLY for a card which has been authorized but not
marked for inclusion in the open settlement batch.

40. trExec.authDetails : This field returns extended details about the transaction, as returned
by either the processing network or OneStep ChargeSM itself (usually in the case of an
error).

41. trExec.apprCode : This field indicates the approval code returned by the processing
network, if applicable.

42. trExec.authDate : This field indicates the authorization request date, when applicable, in
Pacific Standard Time (Pacific Daylight Time during Daylight Saving Time periods)
for all STATUS and QTRANS requests. Note that this does not mean that the
transactions was authorized (it might have been declined, for example), but rather this
indicates the date on which the transaction was attempted. At transaction execution time,
the value returns as, basically, the Progress “today” and “time” keywords, so the clock of

Pure Progress Payment Processing 14 What Will Pure Progress Mean For You?SM

the host running OSC will determine the value at execution time. Generally speaking, this
is merely for backward compatibility—the authDate field is generally used later, for
STATUS and QTRANS requests, when the OSC Engine timestamp (PST/PDT) will be
used. Therefore, you may wish to apply proper timezone offsets for your OSC end users.

43. trExec.authTime : This field is like the authDate field, except that it represents the number
of seconds since midnight (as in the 4GL “time” keyword) that the transaction was
attempted. Using the authDate and authTime together, you can determine the particular
second of time at which the transaction request was received. PLEASE NOTE, again, that
at transaction execution time, “today” and “time” Progress 4GL keywords will be used to
populate this field for backward compatibility, but the authTime field is generally used for
STATUS and QTRANS operations and will be expressed in PST/PDT time in those cases.

44. trExec.settleDate : The settleDate indicates the date on which the transaction was settled
(captured), in PST/PDT time.

45. trExec.settleTime : The settleTime corresponds with the settleDate and specifies the
number of seconds since midnight that the transaction was settled. Using the settleDate
and settleTime together, you can determine the particular second of time at which the
settlement of the transaction occurred. Once again note that this value is PST/PDT time.

46. trExec.comment : The comment field allows you to track free-form user comments through
OneStep ChargeSM.

47. trExec.source : The trExec.source field provides another field into which your user-defined
tracking information can be inserted. This field can generally be populated with the source
program name, or something similar, such as “ar/orderentry” or something else that you
would like to track as the origin of the transaction request.

48. trExec.action : The action field specifies what type of transaction to perform against the
information contained in the rest of the record. Some common actions are to authorize a
card, return funds, check the status, and so forth. The action field must be assigned one
of the pre-defined Credit Card Action (CCA) or ACH Action (ACHA) data members. These
members are named beginning with “CCA_”, such as “CCA_AUTHONLY” for a transaction
which preauthorizes a card (authorization only, without accompanying inclusion in the
open settlement batch). A sample ACH action is ACHA_PURCHASE, to debit funds from
a checking account (similar to a CCA_PURCHASE).

49. trExec.timeout : This field specifies the maximum allowable time, in seconds, to wait for the
result of the action specified in the trExec.action field. Please note that this is merely an
approximation that should fairly accurately be observed at runtime, under normal
conditions. If you do not assign the trExec.timeout field, OneStep ChargeSM will use the
default timeout value found in OSCConfig.defaultTimeout.

50. trExec.qFromDate : This field allows you to filter a transaction query. The qFromDate
represents the beginning date from which you wish to retrieve transactions.

Pure Progress Payment Processing 15 What Will Pure Progress Mean For You?SM

51. trExec.qFromTime : This field allows you to filter a transaction query. The qFromTime
represents the beginning time (as an integer—the number of seconds since midnight, as
the Progress “time” keyword operates) from which you wish to retrieve transactions.

52. trExec.qToDate : This field allows you to filter a transaction query. The qToDate
represents the ending date to which you wish to retrieve transactions.

53. trExec.qToTime : This field allows you to filter a transaction query. The qToTime
represents the ending time (as an integer—the number of seconds since midnight, as the
Progress “time” keyword operates) to which you wish to retrieve transactions.

54. trExec.vaultID: This field specifies the storage record in the OSC VaultSM upon which to
operate. It can be used in place of sensitive cardholder data, such as cardNo and
expDate, in order to retrieve said details from the OSC VaultSM for processing—it is a
record key/identifier. Requires OSC VaultSM subscription.

55. trExec.stored: This field indicates whether the record represented is actively stored in the
OSC VaultSM and available for use. Requires OSC VaultSM subscription.

56. trExec.storageDate: This field indicates the date upon which this record was stored in the
OSC VaultSM. Requires OSC VaultSM subscription.

57. trExec.storageTime: This field indicates the time (as an integer—the number of seconds
since midnight, as the Progress “time” keyword operates) at which this record was stored
in the OSC VaultSM. Requires OSC VaultSM subscription.

58. trExec.unStorageDate: This field indicates the date upon which this record was unstored
from the OSC VaultSM. Requires OSC VaultSM subscription.

59. trExec.unStorageTime: This field indicates the time (as an integer—the number of
seconds since midnight, as the Progress “time” keyword operates) at which this record was
unstored from the OSC VaultSM. Requires OSC VaultSM subscription.

60. trExec.lastUpdateDate: This field indicates the date upon which this record was last
updated in the OSC VaultSM. Requires OSC VaultSM subscription.

61. trExec.lastUpdateTime: This field indicates the time (as an integer—the number of
seconds since midnight, as the Progress “time” keyword operates) at which this record was
last updated in the OSC VaultSM. Requires OSC VaultSM subscription.

62. trExec.lastTransDate: This field indicates the date upon which this OSC VaultSM record
last had a payment transaction run against it. Requires OSC VaultSM subscription.

63. trExec.lastTransTime: This field indicates the time (as an integer—the number of seconds
since midnight, as the Progress “time” keyword operates) at which this OSC VaultSM record
last had a payment transaction run against it. Requires OSC VaultSM subscription.

Pure Progress Payment Processing 16 What Will Pure Progress Mean For You?SM

64. trExec.transCount: This field indicates the number of payment transactions that have been
executed against the respective vaultID in the OSC VaultSM. Requires OSC VaultSM
subscription.

Note that many of these fields are completely optional. For example, only the following fields
are required in order to process a credit card authorize-only or authorize-and-settle request:

 transNo
 trackData (or cardNo and expDate, or vaultID (requires OSC VaultSM subscription)
 amount
 action

Providing other information can certainly be helpful and is often highly recommended.

In general, character fields whose values exceed the maximum listed length will be truncated
before sending to the processor, but the transaction will still be sent. Numerical values, that is,
integer and decimal fields, that exceed listed maximum values will result in an error—these
fields are not modified by truncation or altered but, instead, the transaction is aborted with an
error. The best practice is to ensure that your application trims values and respects the limits
specified for data fields, as specified above.

5.2 Credit Card Action (CCA) Values

Each trExec record requires a value in the “action” field that determines the operation to
execute on the rest of the data in the record. The set of possible action values for credit
cards, defined in tri8osc/oscapi, begin with “CCA_” and are defined as integers. Please note
that CCA actions are used for all “card types,” including debit cards, private label cards, gift
cards, and so forth. It is much more readable to use the named values via the API than to use
the actual integer values. Following are the available actions and their descriptions. For each
action, the minimum required fields for the trExec table are listed, as well as any additional
supported fields. See the later section on Credit Card Status (CCS) values for descriptions of
the CCS values. Where trExec.vaultID is indicated as a supported field, please note that an
OSC VaultSM subscription is required (vaultID applies only to subscribed OSC VaultSM users).

 1. CCA_AUTHONLY: Authorization only (pre-authorize).
Required trExec fields: transNo

trackData (or cardNo and expDate, or vaultID)
amount
action

Additional supported fields: timeout
currencyCode
CHName
CHAddress

Pure Progress Payment Processing 17 What Will Pure Progress Mean For You?SM

CHAddress2
CHCity
CHState
CHZip
CHPhone
CHEmail
enteredBy
comment
source
PONo
tax
CVV2

This action obtains a valid authorization for the credit card and decrements the
cardholder's open-to-buy limit (available credit), but does not place the transaction in the
open settlement batch for capture during the next scheduled settlement. This action is
often used by merchants at order-entry time in non-retail environments, when shipping will
occur at a later time. This transaction will hence secure the availability of funds, but further
action must be taken in order to capture (settle) those funds so that they are actually
transferred from the cardholder to the merchant's bank account. This further action is
often taken at the time of shipment, in accordance association (Visa/MC/Amex/etc.)
guidelines. A successful CCA_AUTHONLY transaction returns a trExec.authStatus value
of CCS_AUTHONLY, indicating that the authorization succeeded but that the transaction
is authorized only, as opposed to being ready to settle.

An AUTHONLY transaction must be captured (settled) manually within 14 days, or the
authorization will expire, in which case you may re-run a new authorization.

 2. CCA_PURCHASE: Authorize and prepare for settlement (SALE).
Required trExec fields: transNo

trackData (or cardNo and expDate, or vaultID)
amount
action

Additional supported fields: timeout
currencyCode
CHName
CHAddress
CHAddress2
CHCity
CHState
CHZip
CHPhone
CHEmail
enteredBy
comment
source
PONo

Pure Progress Payment Processing 18 What Will Pure Progress Mean For You?SM

tax
CVV2

This action, like CCA_AUTHONLY, obtains a valid authorization for the credit card and
decrements the cardholder's open-to-buy credit limit. However, unlike CCA_AUTHONLY,
a CCA_PURCHASE transaction generally corresponds to a retail sale, where the entire
transaction between a merchant and a customer is complete. The credit card transaction
is included in the open settlement batch and will be settled during the next settlement
execution, with funds thereafter being actually moved from the cardholder to the merchant.
A successful CCA_PURCHASE transaction will return a CCS_RTS status value, indicating
that the authorization succeeded and that the transaction is now ready to settle.

 3. CCA_CREDIT: Credit/return funds.

METHOD 1: trackData or cardNo+expDate

Required trExec fields: transNo

trackData (or cardNo and expDate, or vaultID)
amount
action

Additional supported fields: timeout
currencyCode
CHName
CHAddress
CHAddress2
CHCity
CHState
CHZip
CHPhone
CHEmail
enteredBy

This action reverses the normal flow of funds. Funds will be transferred from the merchant
to the cardholder. This generally occurs during refund/return situations and to correct
errors in billing. A successful CCA_CREDIT transaction returns a status of CCA_RTS,
indicating that the transaction is ready to settle. Note that there is no such thing as an
“authorization” for a credit. Unlike CCA_PURCHASEs and CCA_AUTONLYs,
CCA_CREDIT transactions are placed immediately into the open settlement batch without
any manner of contact with the cardholder's bank. The credit card processing industry
does not support credit authorizations. Therefore, if there are problems with the card
number (such as it being a closed account or bad number), then the problem will be seen
at settlement time.

METHOD 2: OSCID

Required trExec fields: OSCID (of a previous transaction)

Pure Progress Payment Processing 19 What Will Pure Progress Mean For You?SM

amount
action

Additional supported fields: transNo
timeout

This alternative method of a CCA_CREDIT allows you to “refund” against a previously-
authorized transaction, without having to know the credit card number and expiration date.
This is a very common situation in many card processing environments. The OSCID
specified should be the OSCID of a previously-authorized CCA_PURCHASE transaction
or a CCA_CAPTURE transaction, and the specified amount will be credited back. You may
run multiple credits (totaling up to the original captured amount).

In general, it is that simple. However, this operation does get a bit complicated inasmuch
as it ties the CCA_CREDIT back to the original transaction, much like a CCA_CAPTURE.
The METHOD 1 (cardNo+expDate) method of a CCA_CREDIT simply creates a brand
new, standalone transaction. But this OSCID-based method links up all of the transaction
operations in a “chain” which can get complicated if not very carefully managed—speaking
of the CCA_QTRANS output which is designed to be “one row per transaction.” The main
points to remember are these:

(a) If your original transaction was a simple CCA_PURCHASE, you may simply
CCA_CREDIT back an amount up to the original transaction amount, and subsequent
CCA_QTRANS results will show the net amount. You may also issue multiple credits, up
to the original amount.

(b) If your original transaction was a CCA_AUTHONLY, you MAY NOT credit against it
unless it has been CCA_CAPTUREd. Once it has been CCA_CAPTUREd, you may
credit, but you must use the OSCID of the CCA_CAPTURE transaction in your
CCA_CREDIT call. This is very important. For example, if you CCA_AUTHORIZE a
transaction and receive 023-123456 as your OSCID, then you CCA_CAPTURE against it
and receive 023-456789 as the OSCID of that CCA_CAPTURE operation, then you
must supply 023-456789 as the OSCID on your CCA_CREDIT call—you must credit
against the CCA_CAPTURE's OSCID, not against the CCA_AUTHONLY's OSCID.

(c) Like a METHOD 1 CCA_CREDIT, this is an “offline” transaction. So, the OSC Engine
will immediately accept it, provided all of the right fields are specified. However,
subsequently, the OSC Engine may determine that the transaction is NOT valid—for
example, the OSCID specified may be invalid (not pointing to any transaction in the
system). The Engine will subsequently DECLINE the transaction and you would only
discover this by CCA_STATUS/CCA_QTRANS. This is similar to CCA_CREDIT
METHOD 1, which would only fail at settlement time if the cardNumber given turned out
to be a closed/invalid account (for example), except that in the case of METHOD 2, the
failure is known after mere seconds, instead of only at settlement time.

For more discussion of the nuances of the CCA_CREDITs using METHOD 2, particularly
in the case of CCA_AUTHONLY with CCA_CAPTURE, please see the OSC Release

Pure Progress Payment Processing 20 What Will Pure Progress Mean For You?SM

Notes for OSC PCI 1.1.

 4. CCA_STATUS: Check the status of a transaction.
Required trExec fields: transNo

action
Additional supported fields: timeout

This action allows you to check that status of a transaction you have previously executed.
By supplying merely a transNo, action, and timeout, you may retrieve OneStep ChargeSM's
view of the transaction, which is useful for ensuring that your application/database is up-to-
date with the latest real-time status of transactions. Note that it is not particularly useful to
check the status of transactions once they have reached a state where no more change is
expected. For example, once a credit card transaction has been settled (and therefore
moved to the CCS_CLOSED state), no more change is expected for the transaction—it is
completed and closed. You may wish to use a CCA_STATUS operation in order to recall
the settleDate or other information about the transaction, but the authStatus should not
change. Note that only the last four digits of credit card numbers are returned.

Transactions are available for querying or status checking (CCA_QTRANS or
CCA_STATUS) almost immediately after they are executed. “Almost immediately,”
because there is a 5-10 second delay before the transactions are available in the querying
infrastructure of the OSC Engine, once they execute.

 5. CCA_VOICEAUTH: Issue (register) an offline authorization.
Required trExec fields: transNo

trackData (or cardNo and expDate, or vaultID)
amount
apprCode
action

Additional supported fields: timeout
currencyCode
CHName
CHAddress
CHAddress2
CHCity
CHState
CHZip
CHPhone
CHEmail
enteredBy
comment
source
PONo
tax
CVV2

The CCA_VOICEAUTH action allows you to register an offline authorization from your

Pure Progress Payment Processing 21 What Will Pure Progress Mean For You?SM

application. This is perhaps most commonly used in voice-authorization scenarios, when a
CCA_PURCHASE (or CCA_AUTHONLY) transaction returns CCS_CALL, indicating that a
voice-authorization must be obtained. The name CCA_VOICEAUTH may be slightly
misleading, as you may attempt to “force” a transaction through without having literally
obtained a voice-based authorization, but you will need a valid apprCode, and this is
almost always observed in voice-based (manual) authorization scenarios. A successful
CCA_VOICEAUTH transaction will return a status of CCS_RTS, indicating that the
transaction is ready to settle.

 6. CCA_CAPTURE: Mark a previously authorized-only (e.g. CCA_AUTHONLY) transaction
as ready-to-settle.
Required trExec fields: transNo

OSCID
action
amount

Additional supported fields: timeout

This action corresponds to the additional step mentioned previously with regard to
CCA_AUTHONLY transactions. After a card has been authorized via a CCA_AUTHONLY
transaction, you must later capture (settle) the funds. This usually corresponds to the time
of shipment for a product. In order to mark the previously-authorized transaction as ready-
to-settle, you must supply the OSCID of the original transaction and an amount (plus the
action, of course). This amount may be different than the amount that was authorized
previously, which allows you flexibility in determining the final charge to the cardholder.
However, be advised that problems may arise if you try to settle for a greater amount than
you authorized. That is not to say that no such transactions will succeed, but it is highly
recommended that you instead estimate high at authorize time, and then settle for a
possibly lesser amount at shipment time via your CCA_CAPTURE transaction.

The transNo field is “required” because it is used to index and retrieve trExec records, but
it is the OSCID field that will specify which transaction to capture, so be sure that the
OSCID is correct and refers to the exact previously-executed CCA_AUTHONLY
transaction that you wish to capture.

Also note that authorizations are only good for a certain amount of time, which can
actually fluctuate quite a bit depending on banks and even cardholders. Generally
speaking, a credit card authorization is good for about 21 days. However, after 7-10 days
that transaction is considered “stale” by most banks, and settling (capturing) the funds
from that authorization may subject your merchant to an additional surcharge on the
transaction. Therefore, it is highly recommended that you minimize the time between
authorization and capture as much as possible, within your obvious merchant-specific
constraints. OneStep ChargeSM imposes a 14-day authorization window. If an
AUTHONLY transaction is older than 14 days, it cannot be captured via a CCA_CAPTURE
command and is considered to be expired.

 7. CCA_STORE: Store credit card information in the OneStep Charge VaultSM. Requires
OSC Vault subscription.

Pure Progress Payment Processing 22 What Will Pure Progress Mean For You?SM

Required trExec fields: transNo
cardNo and expDate (or vaultID)
action

Additional supported fields: timeout
CHName
CHAddress
CHAddress2
CHCity
CHState
CHZip
CHPhone
CHEmail
comment
source

This action stores sensitive payment card information in the PCI DSS-certified OneStep
Charge VaultSM, for later retrieval. Using a CCA_STORE transaction, you may store
information that you wish not to store in your own database, such as the credit card
number and expiration date, cardholder name, etc., for later use, significantly reducing
liability. The OneStep Charge VaultSM will respond with a vaultID for the stored information,
which you must record. Then, later, simply supply that vaultID on any Vault-supported
payment transaction, without having to supply the respective data fields, and the OSC
VaultSM will retrieve those data fields using the vaultID, and insert them into the transaction
as it runs through the OSC EngineSM. The entire process is seamless to your calling
application—merely supply a vaultID and let the VaultSM retrieve the sensitive, stored data
fields for cardNo, expDate, etc.

 8. CCA_UNSTORE: “Unstore” credit card information in the OneStep Charge VaultSM.
Requires OSC Vault subscription.
Required trExec fields: transNo

vaultID
action

Additional supported fields: timeout

This action “unstores” stored payment card information from the OSC VaultSM. It is not
exactly a full deletion, as certain information is retained for historical purposes. But, from
the perspective of a calling application, unstoring information causes it to be retired.

 9. CCA_QTRANS: Query OneStep ChargeSM Engine for transaction information.
Required trExec fields: action
Additional supported trExec fields: timeout

authStatus
cardNo
CHName
transNo
vaultID

Pure Progress Payment Processing 23 What Will Pure Progress Mean For You?SM

qFromDate
qFromTime
qToDate
qToTime

The CCA_QTRANS action (along with CCA_QVAULT) is significantly different from other
action values. Whereas other actions typically take a transaction (represented by a trExec
record), perform the action on the transaction, and return the results via the same trExec
record, the CCA_QTRANS action takes one trExec record (to use as the command record)
and returns zero or more appropriate trExec records. This action is basically a reporting
mechanism for OneStep ChargeSM. The OSC user may use a CCA_QTRANS action to
query transactions that are resident within the OSC infrastructure. For example, one might
query OSC for the currently ready-to-settle transactions by issuing a CCA_QTRANS
command, via a trExec record with the action set to CCA_QTRANS and the authStatus set
to CCS_RTS. This tells OSC to return all transactions that are currently ready to settle. If
qFromDate is supplied but qToDate is omitted (or vice versa), then qToDate (or
qFromDate, respectively) will be set equal to qFromDate, so that the query will effectively
target a single day's transactions. The trExec.qFromTime field defaults to 0 (midnight)
upon creation (see $OSC/tri8osc/oscapi), and trExec.qToTime defaults to 86399
(23:59:59) PST/PDT time.

Please be aware that the indiscriminate use of the CCA_QTRANS command may result
in very large record sets being returned, which may consume large amounts of network
bandwidth and CPU time, depending upon your OSC architecture and configuration. For
example, issuing a CCA_QTRANS command with no further criteria specified, such as
authStatus, will result in OneStep ChargeSM returning EVERY transaction in its database,
regardless of status or date/time of execution. For the user who has been running OSC
with a large number of transactions, this may be very wasteful and consume many
precious resources. See the examples section for more information on how to use the
CCA_QTRANS action appropriately.

CCA_QTRANS commands cannot span multiple merchant accounts, but must, rather,
query one merchant account at a time (specified by username and password, as any
trExec command would). As mentioned in the OSC introduction at the beginning of this
User's Guide, please also note that historical transactions (CCS_DECL, CCS_CLOSED,
CCS_ERR, CCS_CALL) are not guaranteed to be available via OneStep ChargeSM
operations after a period of 120 days from settlement/declination.

 10. CCA_QVAULT: Query OneStep Charge VaultSM for stored payment card information.
Requires OSC Vault subscription.
Required trExec fields: action
Additional supported trExec fields: timeout

cardNo
CHName
vaultID
stored

Pure Progress Payment Processing 24 What Will Pure Progress Mean For You?SM

The CCA_QVAULT action is similar to CCA_QTRANS inasmuch as it represents a query
of the OneStep ChargeSM system, rather than an active transaction. OSC will return trExec
records representing the results of the query. The CCA_QVAULT action will query the
OSC VaultSM for records stored there. See the section on OneStep Charge VaultSM for
more information about this valuable service. Using a CCA_QVAULT command, you may
query the VaultSM for records that are stored, or even “unstored” (inactive). You may filter
by cardNo, CHName, and other such fields. For example, run a CCA_QVAULT with
cardNo set to a credit card number to query the VaultSM for all stored records for that credit
card (in most cases there is no reason to store more than one single VaultSM record for a
particular credit card). Or, query with trExec.stored set to “yes” to return a list of all active
VaultSM records stored for the account. Query with trExec.stored set to “no” to return a list
of all formerly stored records that are now “unstored” and inactive (no longer usable from
the VaultSM).

5.3 ACH Action (ACHA) Values

The ACHA values, used for ACH transactions, are similar to their CCA counterparts, except
that they route transactions through the ACH network and apply to bank accounts, as opposed
to credit card accounts. Be advised, however, that ACH does not work the same way that
credit cards do. Unlike the realtime authorization support that is available with credit cards,
ACH is a much more asynchronous process. After an ACHA_PURCHASE or ACHA_CREDIT
transaction executes (and returns ACHS_ACCEPTED), the transaction is no longer updated in
the OSC Engine. The banks involved do not electronically communicate new information back
to OneStep ChargeSM but, rather, will typically notify the merchant manually of any failures
“down the line” after submission, such as Insufficient Funds for a particular customer's
account. The ACHA actions provide a means for ACH transaction submission via the Progress
4GL, but the normal level of “manual” ACH interaction that veteran ACH users are
accustomed to should still be expected.

The available values are as follows.

1. ACHA_PURCHASE: Debit the checking account (like CCA_PURCHASE).
Required trExec fields: transNo
 routingNo

accountNo
 amount
 action
Additional supported fields: timeout

CHName
 CHAddress
 CHAddress2
 CHCity
 CHState
 CHZip
 CHPhone
 CHEmail

Pure Progress Payment Processing 25 What Will Pure Progress Mean For You?SM

 enteredBy

The ACHA_PURCHASE action will debit the bank account represented by routingNo and
accountNo. A successful ACHA_PURCHASE transaction will return a trExec.authStatus
value of ACHS_ACCEPTED to indicate that the transaction has been accepted into the
ACH network. Otherwise, a status of ACHS_DECLINED will indicate the rejection of the
transaction.

There is no concept of AVS (Address Verification Service) with ACH, but the CHName,
CHAddress, etc. parameters can be supplied nevertheless for tracking purposes.

Note that the various “CH” (cardolder) parameters are supported even though there's no
“card” involved. Think of the CHName as merely the general “account holder” name.

2. ACHA_CREDIT: Credit the checking account.
Required trExec fields: transNo

routingNo
accountNo
amount
action

Additional supported fields: timeout
CHName
CHAddress
CHAddress2
CHCity
CHState
CHZip
CHPhone
CHEmail
enteredBy

The ACHA_CREDIT action is just like ACHA_PURCHASE, except that funds move from
the merchant to the customer.

3. ACHA_STATUS: Retrieve status of ACH transaction.
Required trExec fields: transNo

action
Additional supported trExec fields: timeout

This action allows you to check the status of a transaction you have previously executed.
It is identical to CCA_STATUS, except that it applies to ACH transactions. Note that the
account number (trExec.accountNo) is not returned. Note again that the status will not
change even if an error such as Insufficient Funds occurs after ACH processing has begun
—that information is not sent back to OSC by the financial institutions involved. The
ACHA_STATUS command is for querying transactions about their submission results.

4. ACHA_QTRANS: Query OneStep ChargeSM Engine for ACH transaction information.

Pure Progress Payment Processing 26 What Will Pure Progress Mean For You?SM

Required trExec fields: action
Additional supported trExec fields: timeout

authStatus
CHName
transNo
qFromDate
qFromTime
qToDate
qToTime
username
password

The ACHA_QTRANS action is identical to the CCA_QTRANS action, except that it applies
to ACH transactions instead of credit/debit/etc. card transactions.

5.4 OSC Administrative Action (OSCA) Values

OneStep ChargeSM supports administrative actions to retrieve information about OSC itself or
perform diagnostics functions. Please note that if you supply an OSCA trExec record in an
oscengin.p call, all other trExec records in the table for that call will be ignored. That is,
you cannot create two trExec records, assign OSCA_VERSION to one of them and
CCA_AUTHONLY to the other (to run an actual transactions), and then run the trExec record
via an oscengin.p call. OSC will execute the OSCA action only and will ignore the CCA action,
in this example.

11. OSCA_VERSION: Show OneStep ChargeSM version information.
Required trExec fields: action

The OSCA_VERSION action will return the OneStep ChargeSM version in the
trExec.authDetails field, with a trExec.authStatus of CCS_RTS.

12. OSCA_BROKERCHK: Test the OSCBrokerSM.
Required trExec fields: action

This action will run basic diagnostic tests on the OSCBrokerSM to verify that it is
functioning and set up correctly. The tests typically take about 10-15 seconds to
complete. A value of CCS_RTS will be returned if the broker passes the the diagnostic
tests. Otherwise, CCS_ERR will be returned. See trExec.authDetails for further
information. In addition, OSC will use a separate log file during the OSCA_BROKERCHK
process. The value “.brokerChk” will be appended to the current OSC log file name
(logSpec or devLogSpec). For example, if you have specified “/var/log/cc.log” as your log
file, then OSC will log to “/var/log/cc.log.brokerChk” during an OSCA_BROKERCHK
operation. This applies only to static log files (OSCConfig.logMethod = “to”). If you are
logging “through” a command, such as to pipe log messages through syslog, then no
separate log will be generated (the OSCA_BROKERCHK logging information will appear in
the same log file as all of your other OSC logging information).

Pure Progress Payment Processing 27 What Will Pure Progress Mean For You?SM

5.5 Credit Card Status (CCS) Values

Like the Credit Card Action (CCA) values, the Credit Card Status (CCS) values are defined in
the API interface file itself (tri8osc/oscapi). These values begin with “CCS_” and are defined
as integers. Following is the list of possible CCS values and their descriptions.

1. CCS_NODO: No action taken (no status to report).

This status value is more or less a marker status for new records in certain situations. It
indicates that no action has been taken for the transaction.

2. CCS_AUTHONLY: Authorized only.

This status indicates that the credit card has been authorized (only) but is not included in
the open settlement batch.

3. CCS_RTS: Ready to settle.

This status indicates that the transaction has been included in the open settlement batch
and is ready to settle during the next batch settlement.

4. CCS_DECL: Card declined.

This status indicates that the transaction was declined by the processing network. The
reason for the denial may be found in the trExec.authDetails field, though it is quite
common for this field to yield little if any additional information. The reasons for declining
credit card transactions vary greatly, from insufficient credit or open-to-buy limit to reported
stolen cards.

5. CCS_CLOSED: Transaction settled.

This status indicates that the transaction has been settled (captured) and is therefore
closed to further processing.

6. CCS_OK: Operation succeeded.

This status indicates that a particular non-payment transaction succeeded. It is typically
used for CCA_STORE and CCA_UNSTORE actions.

7. CCS_ERR: A processing network error or OneStep ChargeSM error has occured.

This status indicates that the transaction was subject to an error. More specifically, either
the processing network returned an error status or OSC itself did. The trExec.authDetails
field is particularly useful for obtaining additional details in these cases.

Pure Progress Payment Processing 28 What Will Pure Progress Mean For You?SM

8. CCS_CALL: Card requires voice authorization.

This status indicates that the transaction requires manual voice authorization. Voice
authorization is generally obtained via a phone call to the appropriate phone number,
given to the merchant. Note that once this status is received the transaction is basically
finished. You may establish a new transaction and issue a CCA_VOICEAUTH command
on it, supplying your obtained approval code (apprCode), but the transaction that was
marked as authStatus CCS_CALL is more or less finished at this point and will remain
CCS_CALL. You may want to represent this as CCS_DECL (manually) in your database
from this point forward.

9. CCS_SYSERR: System error occurred.

This status indicates that the transaction subject to a system error. Unlike CCS_ERR, this
does not mean that the processing network or OSC returned an error but rather that
communication or Progress errors occurred. For example, if a network connection to the
OSCBrokerSM could not be established, CCS_SYSERR will be returned. Use the
trExec.authDetails field for additional information. In general, CCS_SYSERR is returned
when errors occurred before the transaction was delivered to the OSC processor for
execution.

10. CCS_SUBERR: A severe system error occurred (error after submission).

This status indicates that the transaction encountered an error, in a very similar fashion to
CCS_SYSERR. However, unlike CCS_SYSERR, this error indicates that the transaction
appears to have been delivered to the OSC Engine, and therefore much care must be
taken in solving the problem, as the card may have been charged. Think of this like a print
spooler. Once data has been delivered to the printer, if an error occurs one must
investigate carefully to determine if anything was actually printed on the printer. If it was,
there is no way to “undo” this fact, though other corrective action may be taken.
CCS_SUBERR is encountered, for example, when a timeout occurs in waiting for results
from the OSC Engine. Be sure to set your trExec.timeout value high enough, though
generally execution should not take more than several seconds.

5.6 ACH Status (ACHS) Values

The ACHS (ACH Status) values are very similar to CCS values, except that they apply to ACH
transactions.

1. ACHS_ACCEPTED: The ACH transaction was accepted into the ACH network.

This status value means that the transaction has not been rejected. It does not mean that
the transaction will not be rejected. Since ACH is a very asynchronous process,
especially as compared to credit card transactions, one must allow several days for funds
to clear successfully. In general, though, ACHS_ACCEPTED means success for an ACH

Pure Progress Payment Processing 29 What Will Pure Progress Mean For You?SM

transaction.

2. ACHS_DECLINED: The ACH transaction has been declined or otherwise rejected.

This status value indicates that the ACH network (or the OneStep ChargeSM Engine itself)
has rejected the ACH transaction. Look in trExec.authDetails for additional information
about the rejection.

3. ACHS_ERR: The ACH transaction was subject to an error.

See the trExec.authDetails field for more info about the error.

4. ACHS_SYSERR, ACHS_SUBERR: Identical to CCS_SYSERR and CCS_SUBERR,
respectively.

Since SYSERR and SUBERR are OSC communication-related errors, the values
ACHS_SYSERR and ACHS_SUBERR are provided merely to provide some continuity.
They are the same as CCS_SYSERR and CCS_SUBERR.

5.7 Currency Code (OSC_CURR) Values

OneStepSM Charge supports various currencies via the trExec.currencyCode field. Possible
values for this field are listed here. Please note that you must ensure that your merchant
account (and its processor, such as Vital) is able to take the currency you are trying to use—
you cannot merely assign a different trExec.currencyCode value and immediately start
transacting in alternate currencies.

Value Description Value Description
OSC_CURR_ARP Argentine Pesos OSC_CURR_ATS Austrian Schillings
OSC_CURR_AUD Australian Dollars OSC_CURR_BBD Barbadian Dollars
OSC_CURR_BEF Belgian Francs OSC_CURR_BGL Bulgarian Lev
OSC_CURR_BMD Bermudan Dollars OSC_CURR_BRR Brazilian Real
OSC_CURR_BSD Bahamian Dollars OSC_CURR_CAD Canadian Dollars
OSC_CURR_CHF Swiss Francs OSC_CURR_CLP Chilean Pesos
OSC_CURR_CNY Chinese Yuan Renmimbi OSC_CURR_CSK Czech (Republic) Koruna
OSC_CURR_CYP Cyprian Pounds OSC_CURR_DEM German Deutschemarks
OSC_CURR_DKK Kroner (Denmark) OSC_CURR_DZD Algerian Dinars
OSC_CURR_EGP Egyptian Pounds OSC_CURR_ESP Spanish Pesetas
OSC_CURR_EUR Euros OSC_CURR_FIM Finnish Markka
OSC_CURR_FJD Fijian Dollars OSC_CURR_FRF French Francs
OSC_CURR_GBP UK Pounds OSC_CURR_GRD Greek Drachmas

Pure Progress Payment Processing 30 What Will Pure Progress Mean For You?SM

OSC_CURR_HKD Hong Kong Dollars OSC_CURR_HUF Hungarian Forint
OSC_CURR_IDR Indonesian Rupiah OSC_CURR_IEP Irish Punt
OSC_CURR_ILS Israeli New Shekels OSC_CURR_INR Indian Rupees
OSC_CURR_ISK Icelandish Rupiah OSC_CURR_ITL Italian Lira
OSC_CURR_JMD Jamaican Dollars OSC_CURR_JPY Japanese Yen
OSC_CURR_KRW South Korean Won OSC_CURR_NLG Dutch Gilders
OSC_CURR_RUR Russian Rubles OSC_CURR_SAR Saudi Arabian Riyal
OSC_CURR_SDD Sudan Dinar OSC_CURR_SEK Swedish Krona
OSC_CURR_SGD Singaporean Dollars OSC_CURR_SKK Slovakian Koruna
OSC_CURR_THB Thai Baht OSC_CURR_TRL Turkish Lira
OSC_CURR_TTD Trinidad and Tobago

Dollars
OSC_CURR_TWD Taiwanese Dollars

OSC_CURR_USD US Dollars OSC_CURR_VEB Venezuelan Bolivar
OSC_CURR_XAG Silver Ounces OSC_CURR_XAU Gold Ounces
OSC_CURR_XCD Eastern Caribbean

Dollars
OSC_CURR_XDR Special Drawing Right

(IMF)
OSC_CURR_XPD Palladium Ounces OSC_CURR_XPT Platinum Ounces
OSC_CURR_ZAR South African Rand OSC_CURR_ZMK Zambian Kwacha

5.8 AVS Result (AVS) Values

The results of AVS operations indicate how precise the match was for AVS data submitted on
a transaction. The AVS result code can be found in trExec.AVSResult after a relevant
transaction returns.

AVS Code Description
AVS_EXACT_ZIP9 Exact match, 9 digit zip code
AVS_EXACT_ZIP5 Exact match, 5 digit zip code
AVS_STREET_ONLY Street address match only
AVS_ZIP9_ONLY 9 digit zip code match only
AVS_ZIP5_ONLY 5 digit zip code match only
AVS_NO_MATCH No match on street address or zip code
AVS_UNAVAIL AVS unavailable on this card
AVS_NONUS_UNAVAIL Non-US card issuer, AVS unavailable
AVS_ISSUER_DOWN Card issuer system (cardholder's bank) currently down, try again

later.
AVS_ERROR_INELIGIBLE Error, ineligible—not a mail/phone order
AVS_NOT_SUPPORTED Service not supported

Pure Progress Payment Processing 31 What Will Pure Progress Mean For You?SM

AVS_GEN_DECL General decline or other error

5.9 API Functions

The following functions are defined within the OSC API to help with a few tasks.

1. function panicSave returns log (input table for trExec, input transNo as int)

This function saves a trExec record to disk, at OSCConfig.panicDir/filename where
filename is the transNo of the trExec record. The transNo is supplied as the second
parameter. If transNo = -1, then the first record in the trExec table (and presumably the
only, if transNo = -1) is written. This function is useful if you are encountering errors or
want to make sure that, in certain situations, a Progress UNDO does not destroy
information retrieved from the trExec table. This function is merely a means by which you
can quickly export some/all records to disk temporarily.

2. function OSCConstChar returns char (input OSCConstant as int)

This function returns a character representation of the OSCConstant (a
CCA_/ACHA_/OSCA_ or CCS_/ACHS_ value), which is useful for display/logging
purposes. For example, OSCConstChar(CCS_AUTHONLY) returns the character string
“CCS_AUTHONLY” which is useful because the literal value of CCS_AUTHONLY is
merely an integer.

3. function OSCConstEnglish returns char (input OSCConstant as int)

This function returns an English description of the OSCConstant (a CCA_/ACHA_/OSCA_
or CCS_/ACHS_ value), which is useful for end-user displays. For example,
OSCConstEnglish(CCS_AUTHONLY) returns “AUTHORIZED (ONLY)”.

4. function OSCConstEnglishAbbr returns char (input OSCConstant as int)

This function is just like OSCConstEnglish except that it returns fixed-width descriptions,
which are useful when you have a fixed-width browse column, for example. All returned
English descriptions are 8 characters or fewer. For example,
OSCConstEnglishAbbr(CCS_AUTHONLY) returns “AUTHONLY”.

5. function maskVal returns char (input inString as char, input numClear as int)

This function masks all but the last numClear characters of inString with “X” characters.
For example, maskVal(“1234567890123456”,4) yields “XXXXXXXXXXXX3456” .

The following three functions perform basically the same function, but can be used to
standardize on masking policies by transaction type (which may change in future releases).

Pure Progress Payment Processing 32 What Will Pure Progress Mean For You?SM

6. function CCMask returns char (input inString as char)

This function uses the default usage of maskVal to mask a credit card number. For
example, CCMask(“1234567890123456”) returns “XXXXXXXXXXXX3456” (all but last four
digits of a credit card number are masked).

7. function ACHRoutingMask returns char (input inString as char)

This function uses the default usage of maskVal to mask an ACH routing number. For
example, ACHRoutingMask(“12345678”) returns “XXXX5678” (all but last four digits of a
routing number are masked). Note that the OSC Engine itself does not mask routing
numbers, but will return them in their entirety.

8. function ACHAccountMask returns char (input inString as char)

This function uses the default usage of maskVal to mask an ACH account number. For
example, ACHAccountMask(“123456”) returns “XX3456” (all but last four digits of a credit
card number are masked).

5.10 Multi-Merchant Support

As of OneStep ChargeSM 1.1, multi-merchant operations are supported directly in the trExec
temp-table. By supplying the trExec.username and trExec.password fields on any trExec
record, you will override the default OSC username and password for that particular
transaction. This allows you to specify transaction-level multi-merchant information in a single
OneStep ChargeSM engine call at runtime. You may, as always, build a trExec temp-table with
many rows, but with the trExec.username and trExec.password fields you may book each
transaction (each trExec record) in your table to a different merchant account, if you so desire.
Note that the correct username and password must always be used to properly query
transactions via CCA_STATUS and CCA_QTRANS.

If you do not supply a value for trExec.username and trExec.password, the defaults from
OSCConfig.username and OSCConfig.password will be used. Therefore, trExec.username
and trExec.password need only be used by those merchants who wish to utilize multi-
merchant support in the trExec temp-table.

5.11 Purchase Card Level II (PC II) Support

Purchase Card Level II data provides many advantages. Two primary advantages are
“trackability” and better interchange fees. A “Purchase Card” or “Corporate Card” is a special
credit card. It operates in the same basic way as a credit card, but it is typically issued to
corporate entities for use with company purchases. There is typically a daily spending limit,
and that limit can be quite low. The US Federal Government, for one example, uses Purchase
Cards (and other very similar formats) quite extensively. Since OneStep ChargeSM supports
PC II, you may provide three key pieces of extra data when you transact on a Purchase Card

Pure Progress Payment Processing 33 What Will Pure Progress Mean For You?SM

and reap the benefits of PC II. These three extra pieces of data are the purchase order
number (“PO number”) relevant to the transaction, the tax, and the ship-to ZIP code. Supply
these values in trExec.PONo, trExec.tax, and trExec.shipToZip respectively. If the card is
indeed a Purchase Card, and provided that your merchant account runs through a PC-II-
supported processing network, you will receive PC II qualified interchange fees on the
transaction (which are usually much lower than non-qualified fees), and the cardholder will
receive extra transaction detail (including the PO number) on his end-of-month statement.
Note that if trExec.tax and/or trExec.shipToZip do not apply (such as for digital products or
non-taxed sales) they can be left blank, as the key field for PC II triggering is trExec.PONo.
However, the trExec.shipToZip field is required for AMEX Purchase Corporate transactions, so
be sure to supply it if possible, at least for AMEX PC transactions.

For an example PC II transaction, see the “Examples” section.

5.12 Purchase Card Level III (PC III) Support

Purchase Card Level III extends PC II by adding even more detail about the transaction,
typically for use on the cardholder's statement to provide more detail for tracking expenses.
OneStep ChargeSM supports PC III for non-T&E, non-fleet transactions on the TSYS (formerly
known as Vital) platform for CCA_PURCHASE transactions. To use PC III, supply values for
any of the following fields:

trExec.vatNo
trExec.commodityCode
trExec.discount
trExec.shipHandling
trExec.duty
trExec.numLines

as well as any of the line-specific PC III fields:

trExec.productCode[]
trExec.price[]
trExec.lineDiscount[]
trExec.quantity[]
trExec.description[]
trExec.uom[]

Additionally, note that PC III transactions augment PC II transactions. That is, a PC III
transaction can contain all of the PC II fields (such as trExec.PONo), as well as the additional
PC III fields listed above.

For example PC III transactions, see the “Examples” section.

5.13 OneStep Charge Vault

Pure Progress Payment Processing 34 What Will Pure Progress Mean For You?SM

The OneStep Charge VaultSM is a value-added service available through the standard OSC
API, which enables the storage of sensitive cardholder data without the accompanying liability
and expense of Payment Card Industry Data Security Standard (PCI DSS) compliance. When
a merchant or processing entity stores sensitive card data, such as the credit card number,
expiration date, cardholder name and address, and so on, significant liability is incurred—and
data breaches make headlines almost daily. With the OneStep Charge VaultSM, organizations
can utilize OSC's DSS-certified secure storage to store data for later use. Many scenarios
make storing credit card data necessary. For example, recurring, automated billing would
require a merchant to keep cardholder data on file, yet that merchant may wish to avoid the
liability and expensive of securing the sensitive fields. Similarly, a manufacturer who ships part
of an order, and needs to capture a previous authorization (a CCS_AUTHONLY transaction
created by a previous CCA_AUTHONLY command), yet also needs to re-authorize the
remaining balance of the order back onto the credit card, would have a similar need to keep
the credit card number on file, yet may want to avoid the liability of storing in on-site.

Using OSC VaultSM functionality requires a distinct subscription, with the features activated on
your account. Please contact us (see the “Getting Help” section) if you wish to activate OSC
VaultSM functionality on your account.

Basic VaultSM Architecture

The OneStep Charge VaultSM operates using a very simple store-use-unstore architecture. The
essential process flow is:

1. Store the desired fields with a CCA_STORE command.
2. Record the vaultID returned by the CCA_STORE transaction into your own database,

rather that storing the cardNo and expDate.
3. When a subsequent payment transaction is desired, supply the vaultID for the

transaction (such as a CCA_AUTHONLY) instead of cardNo and expDate. The OSC
VaultSM will retrieve the cardholder data for the given vaultID and will automatically use
that data for the payment transaction.

4. When the cardholder data is no longer needed, “unstore” it with a CCA_UNSTORE
command, supplying the vaultID you wish to unstore. Unstoring data removes it from
the VaultSM and marks it as “inactive,” though a record of the original vaultID is retained.

Supported Fields for VaultSM Storage

The following trExec fields may be stored in the OneStep Charge VaultSM:

cardNo
expDate
CHName
CHAddress
CHAddress2
CHCity
CHState

Pure Progress Payment Processing 35 What Will Pure Progress Mean For You?SM

CHZip
CHPhone
CHEmail
comment
source

Utilizing and Overriding VaultSM Fields

As the above documentation for CCA_AUTHONLY, CCA_PURCHASE, and other CCA
transactions shows, the vaultID field may be supplied in place of cardNo and expDate. If it is,
the VaultSM will retrieve all stored fields for the vaultID and use them on the transaction. Any
fields supplied on the transaction itself will override the VaultSM fields. For example, if a given
VaultSM record has cardNo, expDate, CHName, CHAddress and CHZip stored, and a
CCA_PURCHASE transaction specifies none of these fields (but specifies the vaultID), then
the VaultSM will supply all five fields. But if the CCA_PURCHASE transaction does supply
CHName and CHZip, the values supplied will override the Vault-stored fields, for those fields
only, for that particular transaction. That is, supplying a vaultID on a payment transaction will
cause the VaultSM first to fill in all of its stored fields for the vaultID, and then the supplied
trExec fields will override any retrieved values for the given fields.

Updating Stored Values

To update the data stored in the VaultSM, run a CCA_STORE transaction, supplying the
vaultID of the record to update, and any trExec fields that you wish to update. For example, if
a cardholder has updated his expiration date, run a CCA_STORE, supply the vaultID of the
VaultSM record to update, and supply the new expDate (but leave all other trExec fields blank).
The OSC VaultSM will update the stored data for expDate, leaving all other fields unchanged.

Removing a Record from the VaultSM (Unstoring)

Use the CCA_UNSTORE action to “unstore” VaultSM data. Running a CCA_UNSTORE, with a
vaultID supplied, will cause the VaultSM to retire the VaultSM record and its stored data. The
record itself will be retained for historical purposes, but the trExec.stored field will be set to
“no” and the VaultSM record can no longer be used on any payment transactions.

Querying the VaultSM

Use the CCA_QVAULT action to query the OSC VaultSM for record information in the same
essential manner that CCA_QTRANS can be used to query the OSC Engine for transaction
information. This allows you to get a listing of your stored VaultSM records. Because records
are retained permanently even after an unstore (though cardholder data is no longer available
for use and the VaultSM record cannot be used on a payment transaction), you may use the
trExec.stored field to query for stored, unstored, or all, records. For example, querying with
trExec.stored set to “yes” will return all available, “live” (active) VaultSM records, whereas
leaving trExec.stored at its default “?” value will return ALL VaultSM records, including unstored
(inactive) records.

Pure Progress Payment Processing 36 What Will Pure Progress Mean For You?SM

Note that trExec records returned by a CCA_QVAULT contain several handy fields that apply
only to Vault records:

vaultID
stored
storageDate
storageTime
unStorageDate
unStorageTime
lastUpdateDate
lastUpdateTime
lastTransDate
lastTransTime
transCount

See the definitions of these fields (above) for further descriptions of their use.

See the “Examples” section for OSC VaultSM example transactions.

5.14 Transaction Settlement

In the electronic payment processing world, no money actually moves until a “settlement”
occurs, with almost all payment types. During a normal business day, a merchant builds an
“open batch” by performing CCA_PURCHASE transactions, CCA_CREDIT transactions,
CCA_CAPTUREs, and so forth. At the end of the day, the open batch must be presented to
the processor to be delivered into the clearing infrastructure of the associations (Visa/MC,
Amex, etc.). This process is called “settling” the open batch. If a merchant fails to settle
transactions promptly enough, surcharges are levied against the merchant. It is
recommended to always settle at least once per day.

OneStep ChargeSM handles settlement automatically. The OSC Engine will settle all open
transactions (all open batches—all CCS_RTS transactions) each day at 20:00 Pacific Time
(8:00 p.m.). The settlement process also includes sending ACH transactions to the ODFI
(Originating Deposit Financial Institution) and into the ACH network. After this time, new
transactions will be included in the next day's batch.

After settlement occurs, which typically takes only a few seconds once it has begun, your
settled card transactions will have a status of “CCS_CLOSED” and will have a
trExec.settleDate, trExec.settleTime and trExec.batchNo when you query them (via
CCA/ACHA_STATUS or CCA/ACHA_QTRANS). See the section in this guide concerning
ACH for information on determining the success of ACH transactions. Any transactions that
fail during the settlement process will NOT receive a batchNo. OneStep ChargeSM
automatically works with the processing network to solve batch settlement issues and get
them resolved. Please note that settlement issues/problems are very rare, largely thanks to
the authorization infrastructure present in the industry and OSC's use of it.

It is important to note that in the electronic payments industry, actual bank deposits are

Pure Progress Payment Processing 37 What Will Pure Progress Mean For You?SM

asynchronous and are subject to various delays (banking holidays, card association rules,
Federal Reserve Bank schedules, etc.). If a bank settlement occurs via OneStep ChargeSM on
Monday, August 1, the funds are typically in process for 2-4 days, and the merchant will
typically receive the actual deposit on, say, Thursday, August 4 or Friday, August 5. Some
merchants have agreements that guarantee that their settlements are funded faster—this is
entirely up to the merchant's bank and has nothing to do with OSC itself. Once OSC has
submitted the settlement batch, it is subject to the same delays throughout the banking system
that any other credit card settlement batch (regardless of software used) is subject to.

To further complicate the issue, it is common for a merchant's merchant account to have
separate American Express (AMEX) deposits vs. Visa/Mastercard. So, for example, a
settlement batch that has ten $10 transactions in it (4 AMEX and 6 Visa/MC) may produce
two deposits: AMEX will deposit their funds according to their schedule or agreement, and
Visa/MC (that is, the acquiring bank) will deposit theirs, independent of the others. If this
example transaction from Monday, August 1, had the aforementioned ten $10 transactions,
then the $40 worth of AMEX may arrive in the merchant's checking account on Wednesday,
August 3 while the remaining $60 arrives Thursday or Friday. All of this, again, is completely
independent of OneStep ChargeSM.

One factor of OneStep ChargeSM itself, however, must be considered, and that is the triple-
redundant failover infrastructure that OSC employs at the OSC Engine. Currently there are
three processing nodes (see Figure 1), but this number may increase or decrease, with no
action necessary by the OSC user. Each node is entirely independent of the other nodes, and
can process entirely by itself. Thus, if one node fails or is shut down, or the merchant's
network route to that node is interrupted, processing continues uninterrupted using the other
remaining nodes. This also provides automatic load balancing. A side effect of this
architecture is that each processing node submits its own settlement batch at the end of each
day. Thus, if, during a day's worth of processing, OSC transactions sent through the
OSCBrokerSM hit three different nodes (which occurs according to availability and load, as well
as random factors), then on that day three actual settlements will be submitted. In the ten-
transaction example, if two transactions hit Node 1, three hit Node 2, and five hit Node 3, then
three actual settlements would occur, of two, three and five transactions respectively. While all
of this complexity happens “behind the scenes,” completely unseen by the OSC user, it does
mean that multiple bank deposits will occur (on top of the already-multiplied deposit schedule
common to all credit card processing, described above). The trExec.batchNo fields for a given
day's worth of transactions would show three different batch numbers, revealing that three
actual settlements occurred (one from each node settling its transactions for the day).

5.15 Data Availability Delay

It is important to note that the OneStep ChargeSM Engine utilizes a complex distributed
database to process transactions and then archive and index them for separate, long-term
query availability. Generally speaking, when a transaction is run for the first time, it takes 5-10
seconds for the transaction to propagate to the OSC Engine archiving area for querying
(ACHA/CCA_STATUS, ACHA/CCA_QTRANS). If you run a transaction and then immediately

Pure Progress Payment Processing 38 What Will Pure Progress Mean For You?SM

run, for example, a CCA_STATUS on the transaction, you may receive a “transaction not
found” error. This only occurs when no pause of several seconds is inserted between the
transaction run itself and the CCA_STATUS operation (in this example).

6.0 Examples

This section includes examples of OneStep ChargeSM API usage and execution. These simple
examples should serve to clarify the API and give you a basic understanding of how to use
OneStep ChargeSM. Your user interface is up to you, of course, and these examples serve
merely to illustrate the OSC backend functionality.

6.1 CCA_AUTHONLY Example

Here we'll see how to execute a basic authorization-only transaction.

 /* include the OSC API in order to use OneStep ChargeSM */
 {tri8osc/oscapi}

 create trExec.
 assign trExec.transNo = next-value(yourProgressSequence)
 trExec.cardNo = "1234567812345678"

trExec.expDate = "0305"
trExec.amount = 17.25
trExec.action = CCA_AUTHONLY
trExec.timeout = 90.

 run tri8osc/oscengin.p (input-output table trExec).

After the run statement returns, you may examine the trExec table to see the results of the
transaction. Of particular interest is the authStatus field, which specifies whether or not
authorization was obtained (in this example case of a CCA_AUTHONLY action). So, to
expand upon the above snippet of code, one might operate OneStep ChargeSM in the following
simple manner.

 /* see above code for trExec creation */
run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec
 // record exists, else you'd need “find first” */

if not available trExec
then do:

/* error message, return, quit, etc. */
end.

Pure Progress Payment Processing 39 What Will Pure Progress Mean For You?SM

case trExec.authStatus:
when CCS_AUTHONLY
then do:

message “Card approved: “ trExec.authDetails.
/* register order, print work order, etc. */

end. /* when CCS_AUTHONLY */

when CCS_DECL
then do:

message “Card declined: “ trExec.authDetails.
/* run new transaction, quit, prompt for action, etc. */

end. /* when CCS_DECL */

when CCS_ERR
then do:

/* error message, return, etc. */
end. /* when CCS_ERR */
end case. /* trExec.authStatus */

For testing purposes, a test credit card number and specific expiration date and address
values can be used. See the section in this guide concerning “Test Credit Card Numbers” for
details.

6.2 CCA_PURCHASE Example

Using the CCA_PURCHASE action is virtually identical to using CCA_AUTHONLY, except that
a different authStatus is expected.

 /* include the OSC API in order to use OneStep ChargeSM */
{tri8osc/oscapi}

 create trExec.
 assign trExec.transNo = next-value(yourProgressSequence)
 trExec.cardNo = "1234567812345678"

trExec.expDate = "0305"
trExec.amount = 17.25
trExec.CHName = “Joe Sakic”
trExec.CHAddress = “123 Stanley Cup Place”
trExec.CHZip = “11111”
trExec.enteredBy = “dan”
trExec.source = “oscexample.p”
trExec.action = CCA_PURCHASE
trExec.timeout = 90.

 run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec

Pure Progress Payment Processing 40 What Will Pure Progress Mean For You?SM

 // record exists */

if not available trExec
then do:

/* error message, return, quit, etc. */
end.

case trExec.authStatus:
when CCS_RTS /* <-- NOTICE this is not CCS_AUTHONLY */
then do:

message “Card approved: “ trExec.authDetails.
/* register order, print receipt, etc. */

end. /* when CCS_AUTHONLY */

when CCS_DECL
then do:

message “Card declined: “ trExec.authDetails.
/* run new transaction, quit, prompt for action, etc. */

end. /* when CCS_DECL */

Notice that this example also supplied some additional fields to the trExec record. Namely,
CHName, CHAddress and CHZip were supplied for AVS (Address Verification Service)
operations, and the enteredBy and source fields were used for some extra tracking. These
optional fields expand the usefulness of the OSC reporting mechanisms, as well as giving the
merchant better auditing capabilities and possibly even significantly better credit card
processing fees, thanks to AVS.

6.2.1 CCA_PURCHASE Example - Purchase Card Level II (PC II)

Here we will run a very similar CCA_PURCHASE, except that we will supply some extra fields
that will cause a Purchase Card Level II (PC II) transaction to occur, which can yield better
discount rates on credit card processing fees as well as providing more information to the
cardholder on his/her statement.

 /* include the OSC API */
{tri8osc/oscapi}

 create trExec.
 assign trExec.transNo = next-value(yourProgressSequence)
 trExec.cardNo = "1234567812345678"

trExec.expDate = "0305"
trExec.amount = 17.25
trExec.CHName = “Joe Sakic”
trExec.CHAddress = “123 Stanley Cup Place”
trExec.CHZip = “11111”
trExec.enteredBy = “dan”

Pure Progress Payment Processing 41 What Will Pure Progress Mean For You?SM

trExec.source = “oscexample.p”
trExec.PONo = “44567”
trExec.tax = 1.23
trExec.shipToZip = “11112”
trExec.action = CCA_PURCHASE
trExec.timeout = 90.

 run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec
 // record exists */

if not available trExec
then do:

/* error message, return, quit, etc. */
end.

case trExec.authStatus:
when CCS_RTS /* <-- NOTICE this is not CCS_AUTHONLY */
then do:

message “Card approved: “ trExec.authDetails.
/* register order, print receipt, etc. */

end. /* when CCS_AUTHONLY */

when CCS_DECL
then do:

message “Card declined: “ trExec.authDetails.
/* run new transaction, quit, prompt for action, etc. */

end. /* when CCS_DECL */

This example supplied the PONo (purchase order number), tax, and shipToZip fields for
trExec. These fields are PC II fields and will be sent along with the transaction, typically
qualifying it as a PC II transaction.

6.2.2 CCA_PURCHASE Example - Purchase Card Level III (PC III), No Lines

Here we will augment the CCA_PURCHASE PC II example above, adding even more fields, to
run a Purchase Card Level III transaction. PC III supplies even more information to the
cardholder's bank for inclusion on a statement, and is used for reconciling expenses with more
accuracy and clarity.

 /* include the OSC API */
{tri8osc/oscapi}

 create trExec.
 assign trExec.transNo = next-value(yourProgressSequence)

Pure Progress Payment Processing 42 What Will Pure Progress Mean For You?SM

 trExec.cardNo = "1234567812345678"
trExec.expDate = "0305"
trExec.amount = 17.25
trExec.CHName = “Joe Sakic”
trExec.CHAddress = “123 Stanley Cup Place”
trExec.CHZip = “11111”
trExec.enteredBy = “dan”
trExec.source = “oscexample.p”
trExec.PONo = “44567”
trExec.tax = 1.23
trExec.shipToZip = “11112”
trExec.vatNo = “GB12345678”
trExec.commodityCode = 1234
trExec.discount = 1.01
trExec.shipHandling = 2.12
trExec.duty = 1.04
trExec.action = CCA_PURCHASE
trExec.timeout = 90.

 run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec
 // record exists */

if not available trExec
then do:

/* error message, return, quit, etc. */
end.

case trExec.authStatus:
when CCS_RTS /* <-- NOTICE this is not CCS_AUTHONLY */
then do:

message “Card approved: “ trExec.authDetails.
/* register order, print receipt, etc. */

end. /* when CCS_AUTHONLY */

when CCS_DECL
then do:

message “Card declined: “ trExec.authDetails.
/* run new transaction, quit, prompt for action, etc. */

end. /* when CCS_DECL */

This example supplied the PONo (purchase order number), tax, and shipToZip fields, which
are PC II fields, but then also supplied vatNo, commodityCode, discount, shipHandling, and
duty, all of which are PC III fields. Not every PC III must be supplied every time. The PC III
fields supplied will be sent with the transaction, to qualify it as PC III and provide the additional
data to the cardholder.

Pure Progress Payment Processing 43 What Will Pure Progress Mean For You?SM

6.2.2 CCA_PURCHASE Example - Purchase Card Level III (PC III), With Lines

Here we will augment the CCA_PURCHASE PC III example above, adding even more fields
for line-by-line order information data (order lines). You may supply order line information for
up to 99 order lines on a single OSC transaction.

 /* include the OSC API */
{tri8osc/oscapi}

 create trExec.
 assign trExec.transNo = next-value(yourProgressSequence)
 trExec.cardNo = "1234567812345678"

trExec.expDate = "0305"
trExec.amount = 17.25
trExec.CHName = “Joe Sakic”
trExec.CHAddress = “123 Stanley Cup Place”
trExec.CHZip = “11111”
trExec.enteredBy = “dan”
trExec.source = “oscexample.p”
trExec.PONo = “44567”
trExec.tax = 1.23
trExec.shipToZip = “11112”
trExec.vatNo = “GB12345678”
trExec.commodityCode = 1234
trExec.discount = 1.01
trExec.shipHandling = 2.12
trExec.duty = 1.04
trExec.numLines = 3
trExec.productCode[1] = “HSLH-1234”
trExec.price[1] = 1.34
trExec.lineDiscount[1] = 0.23
trExec.quantity[1] = 2
trExec.description[1] = “HOCKEY STICK LH”
trExec.uom[1] = “EACH”
trExec.productCode[2] = “HSKTL-9987”
trExec.price[2] = 1.05
trExec.lineDiscount[2] = 0.21
trExec.quantity[2] = 1
trExec.description[2] = “HOCKEY SKATE LACE”
trExec.uom[2] = “EACH”
trExec.productCode[3] = “HT-90”
trExec.price[3] = 3.34
trExec.lineDiscount[3] = 0.13
trExec.quantity[3] = 75
trExec.description[3] = “HOCKEY TAPE”
trExec.uom[3] = “FEET”
trExec.action = CCA_PURCHASE
trExec.timeout = 90.

Pure Progress Payment Processing 44 What Will Pure Progress Mean For You?SM

 run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec
 // record exists */

if not available trExec
then do:

/* error message, return, quit, etc. */
end.

case trExec.authStatus:
when CCS_RTS /* <-- NOTICE this is not CCS_AUTHONLY */
then do:

message “Card approved: “ trExec.authDetails.
/* register order, print receipt, etc. */

end. /* when CCS_AUTHONLY */

when CCS_DECL
then do:

message “Card declined: “ trExec.authDetails.
/* run new transaction, quit, prompt for action, etc. */

end. /* when CCS_DECL */

This example supplied all the PC III fields from the previous example, but it also supplied
additional order line data for three order lines. The trExec.numLines field was set to 3,
indicating that three order lines' worth of data would be supplied. If we had then supplied only
two lines' worth of data, an error would have occurred. If we had supplied five lines' worth of
data, line 4 and line 5 would have been ignored (but the transaction would proceed). All of the
order line data that we chose to supply as the first line was assigned to the first array element
of each line field (e.g. vatNo[1], productCode[1], description[1], etc.), and all of the second line
in the second array element (e.g. vatNo[2], productCode[2], etc.).

6.3 CCA_STATUS Example

If you want to check on the status of a transaction at a later time, you may operate in almost
the exact same manner as the above examples, except that you will populate the trExec table
with the transNo of a previously-executed transaction and use CCA_STATUS:

 /* include the OSC API in order to use OneStep ChargeSM */
{tri8osc/oscapi}

 create trExec.
 assign trExec.transNo = yourPreviousTransNo

trExec.action = CCA_STATUS
trExec.timeout = 90.

Pure Progress Payment Processing 45 What Will Pure Progress Mean For You?SM

 run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec
 // record exists */

/* proceed as above, examining trExec.authStatus */

6.4 CCA_CAPTURE Example

The CCA_CAPTURE action, described previously, facilitates the settlement of previously-
authorized (CCA_AUTHONLY) transactions. You must supply the trExec.OSCID of the
previous transaction, as well as the amount for which you wish to settle. This new amount will
then become the final amount of the transaction.

 /* include the OSC API */
{tri8osc/oscapi}

/* assume yourPreviousOSCID holds the OSCID of the AUTHONLY
// transaction, which was for, say, $20.35. We will now
// prepare for settlement, but our final amount will be $17.17
// after final adjustments */

 create trExec.
 assign trExec.transNo = 1 /* or could use previous transNo
 // of original transaction */

trExec.OSCID = yourPreviousOSCID
trExec.amount = 17.17 /* instead of 20.35 */
trExec.action = CCA_CAPTURE
trExec.timeout = 90.

 run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec
 // record exists */

/* proceed as above, examining trExec.authStatus, which should
// be CCS_RTS if all goes well */

6.5 CCA_QTRANS Example

As described previously, the CCA_QTRANS action is a bit different from the other actions.
The QTRANS action facilitates the retrieval of (possibly many) records from the OSC Engine,
rather than sending transactions to it. It is particularly useful for reporting. In the following
example, we will query the OneStep ChargeSM Engine for all transactions executed between
May 21, 2004 and May 25, 2004. Please note that QTRANS and the OSC Engine use PST

Pure Progress Payment Processing 46 What Will Pure Progress Mean For You?SM

(PDT during Daylight Saving Time periods) time, so if this example were to adjust into Central
Standard Time, a conversion of +2 hours (CST = PST + 0200) would be required for the
dates. This example will simply use the dates.

 /* include the OSC API in order to use OneStep ChargeSM */
{tri8osc/oscapi}

 create trExec.
 assign trExec.action = CCA_QTRANS

trExec.timeout = 100
trExec.qFromDate = 05/21/2004
trExec.qToDate = 05/25/2004.

 run tri8osc/oscengin.p (input-output table trExec).

for each trExec no-lock
 where trExec.action <> CCA_QTRANS:

display trExec
 with frame tframe overlay centered

title “Trans Listing”

end. /* for each trExec */

Notice that in this case we created a single trExec record, but after the execution of
tri8osc/oscengin.p. we anticipate any number of trExec records to exist. We want to skip over
the record that was our original query command and view the rest of the records to see what
transactions executed between 05/21/2004 and 05/25/2004 (PST/PDT time).

6.6 OneStep Charge Vault Examples

The OSC VaultSM enables an application to recall and reuse sensitive payment card data
without having to store it locally, thereby reducing liability and security needs. Use of the OSC
VaultSM requires a specific subscription, and the functionality must be enabled for your
OneStep ChargeSM account.

6.6.1 Vault Example: CCA_STORE

Use a CCA_STORE command to store sensitive data in the OSC VaultSM for later use. In this
example, we'll supply all of the Vault-storable fields, then record the returned vaultID in our
database (in the “yourDBTable.vaultID” field).

 /* include the OSC API in order to use OneStep ChargeSM */
{tri8osc/oscapi}

 create trExec.
 assign trExec.transNo = 1 /* transNo is not crucial for

Pure Progress Payment Processing 47 What Will Pure Progress Mean For You?SM

 // non-payment-transaction
 // operations */

trExec.expDate = "0310"
trExec.CHName = “Joe Sakic”
trExec.CHAddress = “123 Stanley Cup Place”
trExec.CHAddress2 = “Suite 2001”
trExec.CHCity = “Denver”
trExec.CHState = “CO”
trExec.CHZip = “11111”
trExec.CHPhone = “800-555-GOAL”
trExec.CHEmail = “sakic@halloffame.com”
trExec.comment = “Best Wristshot Ever”
trExec.source = “oscexample.p”
trExec.action = CCA_STORE
trExec.timeout = 20.

 run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec
 // record exists */

if not available trExec
then do:

/* error message, return, quit, etc. */
end.

if trExec.authStatus eq CCS_OK
then do:

message “Storage successful, vaultID= “ trExec.vaultID.
/* be sure to record the returned vaultID for later use */
yourDBTable.vaultID = trExec.vaultID.

end. /* if CCS_OK */
else do:

message “Storage error: “ trExec.authDetails.
/* run new transaction, quit, prompt for action, etc. */

end. /* if not CCS_OK */

6.6.2 Vault Example: CCA_STORE (update existing record)

Remember that when using the OSC VaultSM you must access records using their unique
vaultID value. In our first CCA_STORE example we recorded the returned trExec.vaultID value
in our sample database table “yourDBTable” in the “vaultID” field (yourDBTable.vaultID). Here
we will update the VaultSM storage for some of the fields.

 /* include the OSC API in order to use OneStep ChargeSM */
{tri8osc/oscapi}

Pure Progress Payment Processing 48 What Will Pure Progress Mean For You?SM

 /* let's assume we have the “yourDBTable” record in scope
 // that contains the vaultID of the record we want to update--
 // our stored vaultID for later use. */

 create trExec.
 assign trExec.transNo = 1 /* transNo value isn't crucial */

trExec.action = CCA_STORE
trExec.vaultID = yourDBTable.vaultID

 /* let's update the expDate, CHAddress and CHAddress2 */
trExec.expDate = “0313”
trExec.CHAddress = “345 Wristshot Street”
trExec.CHAddress2 = “Suite 1996”
trExec.timeout = 20.

 run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec
 // record exists */

if not available trExec
then do:

/* error message, return, quit, etc. */
end.

if trExec.authStatus eq CCS_OK
then do:

message “Storage UPDATE successful“.
end. /* if CCS_OK */
else do:

message “Storage error: “ trExec.authDetails.
/* run new transaction, quit, prompt for action, etc. */

end. /* if not CCS_OK */

6.6.3 Vault Example: CCA_AUTHONLY (no overridden fields)

Now let's run a payment transaction against a VaultSM record that we stored in our previous
CCA_STORE example. In this example we will supply the minimum cardholder data fields,
letting the VaultSM supply all if the fields we stored previously, without overriding any. We'll run
a $17.15 CCA_AUTHONLY transaction. Even though we supply no other fields, the actual
transaction that runs in the OSC EngineSM will include all of the cardholder data we previously
stored, because we are supplying the vaultID of the stored record.

 /* include the OSC API in order to use OneStep ChargeSM */
{tri8osc/oscapi}

 /* let's assume we have the “yourDBTable” record in scope
 // that contains the vaultID of the record we want to update--

Pure Progress Payment Processing 49 What Will Pure Progress Mean For You?SM

 // our stored vaultID for later use. */

 create trExec.
 assign trExec.transNo = next-value(yourProgressSequence)

trExec.action = CCA_AUTHONLY
trExec.vaultID = yourDBTable.vaultID
trExec.amount = 17.95
trExec.timeout = 20.

 run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec
 // record exists */

/* proceed as usual, examining trExec.authStatus */

6.6.4 Vault Example: CCA_AUTHONLY (overridden fields)

Now let's run another payment transaction against a VaultSM record that we stored in our
previous CCA_STORE example. But, in this example, we'll supply our vaultID yet we'll also
OVERRIDE a couple of values. These overridden values will apply to this transaction alone,
at run-time.

 /* include the OSC API in order to use OneStep ChargeSM */
{tri8osc/oscapi}

 /* let's assume we have the “yourDBTable” record in scope
 // that contains the vaultID of the record we want to update--
 // our stored vaultID for later use. */

 create trExec.
 assign trExec.transNo = next-value(yourProgressSequence)

trExec.action = CCA_AUTHONLY
trExec.vaultID = yourDBTable.vaultID
trExec.amount = 17.95
/* all our fields will be pulled by the Vault, but let's
// also override a couple fields */
trExec.CHName = “Patrick Roy”
trExec.CHCity = “Stillwater”
trExec.timeout = 20.

 run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec
 // record exists */

/* proceed as usual, examining trExec.authStatus */

Pure Progress Payment Processing 50 What Will Pure Progress Mean For You?SM

6.6.5 Vault Example: CCA_QVAULT

Let's query the OSC VaultSM for information about the records we have stored. In this example,
we're not filtering by any other parameters (such as cardNo or CHName). Instead, we're just
pulling a list of all of our ACTIVE (stored, available) VaultSM records.

 /* include the OSC API in order to use OneStep ChargeSM */
{tri8osc/oscapi}

 create trExec.
 assign trExec.transNo = 1

trExec.action = CCA_QVAULT
trExec.timeout = 20.

 run tri8osc/oscengin.p (input-output table trExec).

/* now let's loop through our result set */
for each trExec no-lock
 where trExec.action ne CCA_QVAULT:

display trExec
 with frame tframe overlay centered

title “Vault Storage Listing”

end. /* for each trExec */

6.6.6 Vault Example: CCA_UNSTORE

Now let's retire our stored data, using an UNSTORE command.

 /* include the OSC API in order to use OneStep ChargeSM */
{tri8osc/oscapi}

 /* let's assume we have the “yourDBTable” record in scope
 // that contains the vaultID of the record we want to update--
 // our stored vaultID for later use. */

 create trExec.
 assign trExec.transNo = 1

trExec.action = CCA_UNSTORE
trExec.vaultID = yourDBTable.vaultID
trExec.timeout = 20.

 run tri8osc/oscengin.p (input-output table trExec).

Pure Progress Payment Processing 51 What Will Pure Progress Mean For You?SM

find trExec. /* note that this example assumes only one trExec
 // record exists */

if not available trExec
then do:

/* error message, return, quit, etc. */
end.

if trExec.authStatus eq CCS_OK
then do:

message “UN-Storage successful“.
end. /* if CCS_OK */
else do:

message “UN-Storage error: “ trExec.authDetails.
/* run new transaction, quit, prompt for action, etc. */

end. /* if not CCS_OK */

6.7 ACHA_PURCHASE Example

ACH transactions are similar to card transactions in the way they execute. The main
differences appear when considering the notion of settlement or “final success” and the fact
that funds come right from bank accounts (though the same is true about debit cards).

 /* include the OSC API */
{tri8osc/oscapi}

 create trExec.
 assign trExec.transNo = next-value(yourProgressSequence)
 trExec.routingNo = "12345678”

trExec.accountNo = "999999"
trExec.amount = 17.25
trExec.action = ACHA_PURCHASE
trExec.timeout = 90.

 run tri8osc/oscengin.p (input-output table trExec).

find trExec. /* note that this example assumes only one trExec
 // record exists */

if not available trExec
then do:

/* error message, return, quit, etc. */
end.

case trExec.authStatus:

Pure Progress Payment Processing 52 What Will Pure Progress Mean For You?SM

when ACHS_ACCEPTED
then do:

message “ACH transaction Accepted: “ trExec.authDetails.
end. /* when CCS_AUTHONLY */

when ACHS_DECLINED
then do:

message “ACH transaction rejected: “ trExec.authDetails.
end. /* when CCS_DECL */

Once again, keep in mind that ACH transactions and the ACH nationwide infrastructure is
much more asynchronous than credit cards. Therefore, merchants may wish to wait to ship
products, finalize work orders, etc., until the funds have cleared (or at least 48 hours have
passed after the ACHA_PURCHASE execution).

6.8 Test Credit Card Numbers and ACH Accounts

OneStep ChargeSM supports several test account numbers with predictable responses to help
facilitate application testing and OSC evaluation.

The first set of numbers will result in faked “failure” responses without even sending the
transaction across the Internet and through the OSC Engine infrastructure. This means that
the transactions will not be available for later querying via CCA_QTRANS, CCA_STATUS, and
so forth.

Test Card Numbers (Not Sent to OSC Engine)

Card Number Expiration Date Result
4012888888881 0415 CCS_DECL
4012888888881 0515 CCS_CALL
4012888888881 0615 CCS_ERR

The second list of numbers will send transactions all the way through to the OSC Engine,
generating predictable responses. Note that address data is also available on these test cards
in order for you to test AVS functionality (optional). Note also that the result depends upon the
action you run. For example, if you run a CCA_PURCHASE then the result is CCS_RTS, but
if you run a CCA_AUTHONLY then the result is CCS_AUTHONLY.

Test Card Numbers (Sent Through OSC Engine)

Type Card Num Exp Address City ST ZIP CVV Result

Visa 4111111111111111 1215 123 Test St. Somewhere CA 90001 123 CCS_AUTHONLY/RTS

MC 5411111111111115 1215 4000 Main St. Anytown AZ 85001 777 CCS_AUTHONLY/RTS

AMEX 341111111111111 1215 12 Colorado Blvd. Elsewhere IL 54321 4000 CCS_AUTHONLY/RTS

Disc 6011111111111117 1215 6789 Green Ave. Nowhere MA 12345 --- CCS_AUTHONLY/RTS

Diner's 36484444444446 1215 7390 Del Mar Blvd. Atown NY 01101 --- CCS_AUTHONLY/RTS

JCB 213122222222221 1215 350 Madison Ave. Springfield OH 40000 --- CCS_AUTHONLY/RTS

Pure Progress Payment Processing 53 What Will Pure Progress Mean For You?SM

Visa 4012345678909 1215 CCS_DECL (general)

MC 5555444433332226 1215 CCS_CALL

Visa 4444111144441111 1215 CCS_DECL (card err)

Finally, a similar testing infrastructure exists for ACH.

Test ACH Number (Not Sent to OSC Engine)
Routing Number Account Number Result

789456124 00000 ACHS_DECLINED

Test ACH Number (Sent Through OSC Engine)

Routing Number Account Number Result
789456124 55544433221 ACHS_ACCEPTED

7.0 Diagnostics

OneStep ChargeSM writes logging information based upon the values of OSCConfig.logMethod
and OSCConfig.logSpec. It is highly recommended that you use a logging daemon such as
the UNIX Syslog to do your logging, in order to handle thousands of virtually simultaneous log
messages from many users and sources. To use Syslog, one might set OSCConfig as
follows:

assign OSCConfig.logMethod = “thru”
OSCConfig.logSpec = “/usr/bin/logger -p local3.info”.

Alternatively, you may choose to log statically to a file:

assign OSCConfig.logMethod = “to”
OSCConfig.logSpec = “/var/log/cc.log”.

Occasionally, you may want to obtain more detailed information about the processing of a
transaction or the operation of OneStep ChargeSM. This can be done easily by setting the
values of OSCConfig.debug flag. Since OneStep ChargeSM supports runtime configuration
overriding via the configuration file (specified in OSCConfig.confFile), you can turn on debug
without recompiling anything. Simply set one of these flags in your configuration file, and the
next process to load and run OSC will log more verbosely.

8.0 Getting Help

The OneStep ChargeSM documentation set is, of course, the first source for answers to your

Pure Progress Payment Processing 54 What Will Pure Progress Mean For You?SM

OSC questions. In addition, please feel free to consult the OneStep ChargeSM website at
http://onestepcharge.com, where you'll find an FAQ section containing answers to many
common questions. Email support can be obtained via psupport@onestepcharge.com. If
your OneStep ChargeSM license entitles you to phone support, this can be obtained at
405.377.3888 (or check the OneStep ChargeSM website for further/current contact
information).

Pure Progress Payment Processing 55 What Will Pure Progress Mean For You?SM

